
"^ 
^ 

AD-777  878 

AN   INTRODUCTION TO SEARCH THEORY 

Mario Jorge  Ferreira  Braga 

Naval Postgraduate School 
Monterey,   California 

March  1974 

DISTRIBUTED BY: 

KTÜi 
Nation! Technical Information Sonrico 
U. S. DEPARTMENT OF COMMERCE 
5285 Port Royal Road. Springfield Va. 22151 

I 
MMMM 



^7 
UNCLASSIFIED ^ 

ICCUMITV CLASStriCATtON Of THIS PAGE (TW»«« Oal« Cnlmrmd) 

REPORT DOCUMENTATION PAGE 
<.   REPOMT NUMBCR a. eovr ACCCSSION NO 

«.   TITCC f»i< Svtiltl*) 

An   Introduction to  Search Theory 

1.   MlTMONft) 

Mario Jorge Ferreira Braga 

t.   PERFORMING ORGANIZATION NAME AND AOOMII 

Naval Postgraduate  School 
Monterey, California    93940 

11.   CONTROLLING OFFICE NAME AND ADDRESS 

Naval Postgraduate School 
Monterey, California    93940 
U.   MONITONlNO AGENCY NAME ft AOORCSSflf SMSMS Irom CmtflUnt OIHf} 

Naval Postgraduate  School 
Monterey,  California   93940 

READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

»•   RECIPIENT'S CATALOG NUMBER    ^ 

fa>77 7 &?& 
»■ .TY^E OF ntponi* PERIOD 
Ma$terrs Thesis; 
March 1974 

COVERED 

••  PERFORMING ORO. REPORT NUMBER 

t.  CONTRACT OR ORANT NUMEER^ij 

10.   PROGRAM ELEMENT. PHOJECT. TASK 
AREA ft WORK UNIT NUMftERS 

U.   REPORT DATE 

March  1974 
U.   NUMftER OF PAGES 

117 
U.   SECURITY CLASS. (»I Ihl» iip»tt) 

Unclassified 
II*.   OECLASSIFICATION/OOWNGRADING 

SCHEDULE 

I«.    DISTRIBUTION STATEMENT (el (Mt Ktport) 

Approved for public release;  Distribution unlimited. 

17.   CMSTNIEUTION STATEMENT (»I «• tSSmS «NNS IN •'••* », II 3HBS ES RtpW 

I«.    SUPPLEMENTARY NOTES 
N*prtlducMl ^V 

NATIONAL TECHNICAL 
INFORMATION SERVICE 

U S Offpartment of Commerce 
Springfield VA 22151 

It.   KEY WORDS CCenllnu« «i nrtr»» »If II n«e«a«arr tnä imtlly ftr ftleek mmkm) 

Search theory 
Local detection function 
Sweep Width 

Uniformly optimal  search plan 
Search grid 

to.    ABSTRACT fConllnu« an ftvara* »14* II n«c«««afT ai4 Itfamlftr Sr *'•«* mmttm) 

This paper intends   to be an introduction to search theory, 
and it Is written  primarily to assist staff officers  in their 
duties. 

For those who are in   charge of planning and deciding about 
search,   it is generally  felt  that is necessary to know what is 
behind  the standard procedures  found in tactical  publications. 

1 

DD /Ä 1473 
(Page 1) 

EDITION OF I NOV «S IS OBSOLETE 
S/N 0 10 }• 014* 6601  I 

UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (Whm DM« Bnlfdl 



UNCLASSIFIED 
^ 

gbCUmTV CLASSIFICATION 0g THIS PAGCfWm» Dmlm tnlm4) 

. 

' 

I 

However,  they are seldom familiar with the advanced mathematics 
required to read the   sophisticated papers on the  subject.    This 
text   Is an attempt to conciliate   those officers needs, with 
the reasonable  amount of precision, which  Is required for 
planning,   analyzing  and evaluating search procedures. 

DD   Form     1473 (BACK) 
, 1 Jan 73 

S/N 0102-014-6601 
UNCLASSIFIED 

•KCuniTY CLAISiriCATIOM or TMI8 PMl(Wtfn Dim Knl»n4) 



\ 

—^ p— r- ■ ^ 

An Introduction To Search Theory 

by 

Mario Jorge Ferrelra Braga 
Commander, Brazilian Navy 

B.S., Brazilian Naval Academy, 1956 

Submitted In partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN OPERATIONS RESEARCH 

from the 

NAVAL  POSTGRADUATE  SCHOOL 
March 1974 

Author tiltr 
JtLßcuJii Approved by: /r^^n K L^Q^^C^cAy^ 

—      Thesis Advisor 

Chairman, Dep/rtment of Operations Research 
and.Administrative Sciences 

QtUjGfcfczL 
/ 

Academic Dean 

i 



",N 
^ 

ABSTRACT 
, 

This paper Intends to be an Introduction to search theory, 

and It Is written primarily to assist staff officers In their 

duties. 

For those who are In charge of planning and deciding 

about search. It Is generally felt that Is is necessary to 

know what Is behind the standard procedures found In tactical 

publications. However, they are seldom familiar with the 

advanced mathematics required to read the sophisticated papers 

on the subject. This text Is an attempt to conciliate those 

officers needs, with the reasonable amount of precision, which 

Is required for planning, analyzing and evaluating search 

procedures. 
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I.     SETTING THE PROBLEM 

A.     SEARCH AS  AN OPTIMIZATION  PROBLEM 

Almost all  relevant search situations are characterized 

by three basic features: 

(a) uncertainty about the target's  position. 

(b) limitation and uncertainty about the capability of 

detection. 

(c) scarcity of search resources. 

In   (a) what Is meant  Is  that  target's  position  Is described 

by a probability distribution Inside a  "search area"  (denoted 

"S.A."  from now on). 

In  (b)  the point Is  that all   sensors are limited In  their 

ranges and even Inside the proper range there still  exists a 

positive probability of missing  the target,  due  to  factors 

as operator's error, propagation  conditions, and  so on. 

Finally In (c), the problem Is that the resource's amount 

which Is available to perform a search is a finite one. This 

fact  Introduces a  "budget constraint"   In the problem. 

Two basic measures of effectiveness (designated as "M.O.E.'s" 

from no on)  can be used  In  search problems.    The  first is  the 

probability of finding the target, in  a given time,  by using 

the available amount of resources.    The second.  Is the expected 

time to find the target.    As will  be  seen, most of the pro- 

cedures which maximize the former, minimize the  latter.     For 

the time being, this paper will   deal   only with the first. 
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At this point, an example seems appropriate In order to 

Introduce some Important concepts, and to Illustrate those 

already mentioned. Consider the S.A. in Figure 1. 

It Is obvious that for the target there are only two 

possibilities: Either It Is located In cell I, or In cell II. 

Defining the events E,« {Target Is In cell 1} and Eg» (Target 

is In cell II}, the target's location distribution Is then: 

PU,) - Pj • 0.8 

P(E2) « Pjj - 0.2 

Where 
II 
I      P r?i*?u" 

CELL I CELL  II 

Pj  » 0.8 PII   -0-2    1 
Figure 1-1 

Suppose that the sensor which Is In use works by discrete 

glimpses, and define the events D,= {Target Is detected In 

cell 1} and D2= {Target Is detected In cell II}.  Let 

P^/E,) « B1 

P(D2/E2) - B2 

These two probabilities are assumed known and usually equal, 

and characterize the efficiency of the sensor.  Finally, In 

order to take In account the scarcity of searching resources, 



and 

« 

And for cell  II.  by Identical  reasoning 

P(D2) • P(D2/E2)   P(E2) 

Let D=  {target 1s detected}.    Obviously,  D Is the union of 

D.  and D2,  and further more It Is an union of two disjoint 

events, for. If the target is detected.   It occurs either In 

cell   I, or In cell II, but by no means  in both.    Therefore, 

from the axioms  of probability theory; 

H*i*t)   -  P(D)   a  PCD!)  ♦ P(D2) 

or 

P(D)   « PCD^E^   ?(£,)   +  P(02/E2)   P(E2) 

In order to gain more insight in the problem,  suppose the 

following numbers are assigned: 

'll 

0. 8 

0. 2 

B2 ;   ' 0.6 

2 Gli mpses 

Now,  the problem is  to know where to spend the available 

glimpses  in order to have the larger possible value for P(D), 

the probability of detection.    The place for the  first glimpse 

is obvious.    Cell I  having the largest  probability is the 

natural  candidate.    The general  rule is, evidently,  look for 

6 
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suppose that only G glimpses are permitted.    Recalling from 

probability theory,  the definition of conditional  probability, 

it can be stated that: 

Where DirE,  stands for the  intersection of the events  D1  and 

E,,     Bu'if this intersection is carefully examined,  it is 

not difficult to see  that it is equivalent to the event D1. 

In order to prove it, notice that Dj   is  Included in E.a  in 

the  sense that.  If detection occurs in cell   I, evidently the 

target is  there.    Then D,   implies Eil.    On the other hand,  it 

is  possible that the detection fails to find the target in 

Cell   I, and nevertheless it is there.    Then E1  does not imply 

Pj.     Figure 2 shows a Venn diagram which illustrates this fact. 

Figure 1-2 

Due to the above considerations, (*) becomes 

P(D1) 



T w 
the target at the  place where  it  Is most likely to be.     The 

best place for the second glimpse, however,  is not so obvious. 

There are two possibilities:    Cell   I again, or cell   11« 

Therefore,  by computing P(D)  under these two possible courses 

of action,  it is possible to know which is  better.    Observe, 

however, after the sensor had   looked in cell   I,  then P,   and 

P.,  no  longer are  equal   to P(E1)  and PU^).     For,  if cell  I 

was  already  scanned ard  the  target was  not  found  there,   it Is 

less  likely  for this cell  to contain it, and more likely for 

cell   II.    In the extreme case,  when using a perfect sensor 

{B,«B2«1),  If the  target is not  found in cell   I,  then  it  is 

not there,  and thus  P(E,)  =  0 and P{E2)  ■  1,  whatever values 

they  had before the glimpse.    Therefore,  after the first 

glimpse,  it  Is necessary to update  P(E,)  and PfE»)  in order 

to compute  P(D).     Arguing in  the  same way as  before,  it  can  be 

stated: 

PU^nO) 
PUj/ß) 1— 

1 P(D; 

Where D is the complement of D. But, P(E,nö) the probability 

of no detection even though the target is for sure in cell I, 

is equal   to: 

P^nO)  -  PU^IJ,) 

Because the only way for the event E^nD to occur is that no 

detection happens in cell I. 
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Also, the event D Is equivalent to the event 

(D,nE,)U(ö,nE2), because If no detection occurs, either It 

does not occur In cell I with the target there (ö^nE^, or 

In cell II with the target there (O^nEg). These events are 

of course, disjoint. After these considerations It Is 

possible to write: 

P^nöj) 
P^/ö) 

P(t}nö})  + P(E2nö2) 

Further, It Is true that 

P^nl^) - PfE^P^/E,) 

And 

P(E2nö2) = P(E2)P(D2/E2) 

Therefore 

PUj/D) 
p(ty)9i^n^ 

PCE^PCO^E,) + P(E2)P(D2/E2) 

Finally, from the very definition of the event D1, It follows 

that: 

PfDj/Ej) = 1 - P{ü}/£}) ' 

And similarly 

P(D2/E2) - 1 - P(D2/E2) 
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Hence 

Pit}m 
fit,) D-HO^/l^l 

PU,) [l-PCD^E,)] + P(E2) [l-P(D2/£2)] 

and, by the same reasons: 

,  . P(E2) C1-P(D2/E2)] 
P(E2/D) -  1 ?—?  

z     ?{l})   Cl-P(D1/E1)] ♦ P(E2) [1-P(D2/E2)] 

The above results are a particular case of the well known 

theorem of Bayes, from probability theory.  It Is Interesting 

to notice that the mentioned theorem can be generalized to 

any number of cells, and even to continuous distribution. 

The probabilities PCE^/O) and P(E2/D) are called posterior 

probabilities, in opposition to P, and P., which are called 

prior probabilities.  In section 1-2, this subject will be 

treated In a more detailed way. 

Now, there Is a way to know where the second glimpse must 

be placed. Tor, by using the numbers of the problem: 

P(E1/D) (0.8)   [1-0.6] 
(0.8)   [1-0.6]  +   (0.2)   [1-0] 

0.616 

And 

0.2 P(E2/D) - (6.8) tmft (0.2) n-oj" 0-38i 

Therefore, even after the first glimpse, the probability of 

cell I Is still higher and the second must be placed there. 

In accordance to the general rule stated before. 

10 
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The probability of detection, P ( using this course of 

action. Is now: 

P - (0.616) (0.6) - 0.3696 

Finally, to compute the probability of detection on either 

glimpse, P(D), by using the first option, we can proceed as 

follows: 

P(D) • P  (Detection on 1th glimpse)  + 

P (no detection on 1      glimpse and detection 
on the 2th) 

Or 

P(D)  -  PjB,   ♦  P(E1/Ö)   [1-PjB,]  B, 

-  (0.8)   [(0.8)  +  (0.616)   (0.52)]  : 0.672 

Until now, many Important factors have been neglected for 

the sake of simplicity.  For example, just two cells were used, 

no considerations were made about the size of the search area, 

the sensor was supposed to work by separate glimpses, and no 

attention was paid to the pattern of the track that the search- 

ing vehicle eventually describes Inside of the search area. 

In order to Improve the model, consider the following modifica- 

tions In this example: 

Suppose there Is a target in the S.A. pictured In Figure 

3, whose position Is described by the following distribution: 

Probability of cell j contain the target - P.. jc {I, II, II, IV} 

jÜ, PJ ' PI + PII + PIII + PIV * 1 

11 
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1         \ 

CELL I CELL II 

CELL III ULL IV 

Figure 1-3 

Furthermore, suppose that the sensor's range Is "U" and 

that within "W It detects the target with probability 1. 

Let "v" be the speed of the platform where the sensor is, and 

suppose there Is a fixed amount of time, say "T", for con- 

ducting the search.  If the area that can be swept In the 

time "T" Is smaller than "S.A.", then It Is clear that the 

time must be shared In some way among the four cells. Of 

course, there are Infinite ways of doing that, but the main 

interest Is the one that maximize the probability of finding 

the target. Denoting by Z. a measure of effort spent In cell 

"j", and by "a" the total amount of effort available, (In 

this case the fraction of the "S.A." that can be covered, 

given "w". "v". and "T"), It Is possible to see that the 

"M.O.t." Is a function of Z only. Now, the problem can be 

seen as: 

12 
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MAX P l^T» ^TT»  ITT*  TV 

s.t (I-I) 

IV 
£ Z, A. < a 

Mhere PCZj, ZJJ. Zin. ZIV) - P(2> Is the probability of 

finding the target. Z. Is the DENSITY OF EFFORT In cell j, 

I.e.« the ratio between the effort placed In cell j, and the 

area of cell j.  If Aj Is the area of cell j and t. the time 

spent there. It can be written as: 

The reason the density of effort was chosen as measure. 

Is that in some problems there are cells with different areas. 

Another point is that, although it has been said that the 

probability of finding the target is a function of the dis- 

tribution of effort among the cells, and that the probability 

of detection is a function of the density of effort that has 

been placed there. It was not specified any analytical 

expression for It.  Coming back to the example given, in order 

to develop an approach to this problem: 

Let B.(Z.) be the probability of finding the target in 

cell J, given that the target is there, and a density of effort 

Z. was applied there. From elementary probability theory 

IV 
P(Z) - Z MIJ P, 

J-I  J J  J (I-II) 

13 
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Then, as P. Is already known, the problem now 1s to find B^ 

(Z.). Incidentally, Bj (Z^) which stands for the probability 

of finding the target, given It Is there, and by the use of 

a density of effort I.  Is called a LOCAL DETECTION FUNCTION, 

or as It will be used now, L.D.F. Suppose now, that the 

search Is In one of the cells and assuming that: 

(a) If the target Is In that cell, the probability distri- 

bution of Its position Is uniform. 

(b) If passing by the target at a distance equal or smaller 

than "W" It will be detected with probability 1. 

Under these circumstances, It seems reasonable to perform a 

systematic search In the cell. It can be done by using 

parallel and non overlapping sweeps, as shown In Figure I 
U 

w. w 

Figure 1-4 

Evidently, If A, is the area of the cell, the probability 

of detection after the searching vehicle has traveled a track 

length "L" Is jp, or using jj- as the density effort Z^.  (We 

will now skip the subscripts on Bj(Zj)): 

(wz If  LW<A4 
B(Z) -) j (I-III) 

(l  if  LW>Aj 

14 
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This Is a very appealing L.D.F., because of Its simplicity. 

However, It Is not a simple matter to place the paths exactly 

as In Figure 4. 

•ven If It Is assumed that they are Indeed parallel one 

to another, errors In navigation will cause the paths to over- 

lap In some places, and leave gaps In others. Thus, the 

probability of finding the target will be less than (I-III). 

Therefore, unless the navigation Is very well made, the use 

of formula (I-III) will overestimate the detection capability, 

On the other hand, an entire asystematlc procedure can be 

used to place the path within the cell.  Instead of parallel 

paths, random ones.  It can be formalized by adding one more 

assumption to the other ones: 

(c) The path Is composed of segments with random lengths 

and directions, mutually Independent. 

The situation Is pictured In Figure 5 

Figure 1-5 

15 . 
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The probability of detection aljng segment  "AL"  Is 

UAL (I-IV) 

AL Where A is the area of the cell. Note that the ratio r- Is 

the effort density "AZ" and therefore (I-IV) can be written 

as 

UAZ (i-v) 

Let (B(Z) be the probability the target has been detected 

by the time the search vehicle has traveled a track length 

nL", and therefore placed a density of effort "Z" Inside the 

cell. Then 

B(Z + AZ) ■ B(Z) + [1-B(Z)]W AZ (I-VI) 

This Is because, either the target Is detected during the 

length "L" (and B(Z) stands for this possibility), or the 

search fails to detect by the track length "L" (and succeeds 

in the next Increment AL) and the probability of this event 

is [1-B(Z)]WAZ (multiplication is valid here because of 

assumption (c)). 

Now rearranging (I-VI) 

B(Z + AZ)   -  B(Z)   -   [l-B(Z)] WAZ 

or 

umiLzjm, [i-B(z)]w 

16 
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And In the limit 

B(Z»AZ)^ - B(Z)  .  B  (Z)  .  [i-B(Z)]W 

Solving this differential   equation 

B(Z)  - 1   - EXPC-WZ] (I-VII) 

This Is called RANDOM SEARCH FORMULA, a very Important one. 

first derived by B. 0. Koopman In [1]. 

Plotting the two L.D.F's known already, It can be seen 

that (I-VII) gives a lower bound of effectiveness of the search 

inside the cell. The graph Is in Figure 1-6. 

Figure 1-6 

The real L.D.F. Is generally somewhere In the dashed region 

between the two curves.  In order to Improve the Insight about 

how precisely either model describes the situation, assume 

that the error In the paths placement In Figure IV Is normally 

17 
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distributed with mean zero and standard deviation o^, and gap 

effects mentioned before will take place, even though the paths 

remain parallel. It can be shown (see [1] and [2]), that. If 

the rectangle Is large compared to W, the probability of 

detecting the target depends only on the ratio aN/W.  Figure 7 

which was taken from (2), shows this dependence. 

i 

♦ 

1- E*?BiJ = •« 

0N 

Figure 1-7 

o 
Observe that, for small ratios rr1, the probability 

N 

w 

approaches one and therefore  the systematic search model   applies, 

however, for the values of n-1 about 0.2 the probability 

approaches very rapidly 1-EXP[-1] which Is the probability 

that would be found If WL  ■ A.   Is  substituted  In  the  formula 

(I-VIII). 

For an aircraft. It  Is normally assumed  (see  [3]) oN equal 

to 20 miles and  "W" at 5.000 feet of altitude, equal   to 40 

miles, which gives rr- =   -5 and the random search model   applies. 

18 
5i .        c i r 

* »  j-*. ^k 



The  formula  (I-VII), being a very conservative estimate of 

effectiveness, is far more useful  than  (I-III), and it will 

be used troughout this paper as the L.D.F.  unless otherwise 

specified. 

Now the maximization problem  (I-I) can be written  in a 

more precise way because, by substituting  (1^/11)  in  (I-I) a 

closed expression for the probability of detecting the target 

is obtained. 

IV 
P(2)  -    I    P.   [1-EXP(-WZ   )] 

j-I    J J 

and  (1-1)  becomes 

(I-VIII) 

MAX 
IV 

Z    P.  [1-EXP(-WZ.) 
J«I    J J 

s.t. (I-IX) 

IV 
I    A.Z. < a 

j-I    J J " 

To substitute some numbers in the example given,  for sake 

of further classification,  let:  a) the probability distribution 

be: 

II III IV 
1 

b)  the  searching vehicle  speed by: 

V -  150 knots 

c)  the sensor's range be 

W -  15 miles 

19 
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d) the four cells have the same dimensions, say 30 X 50 miles, 

and f) suppose that the maximum time to be spent In the search 

Is no more than two hours. 

It seems reasonable to split evenly the effort among the 

cells and It Is Indifferent which one it is chosen to start. 

The density of effort in each cell is: 

, . L . Vt  , 100 x i  _ 1 

Where t =4 was used, because there are only two hours to be 

spent in the search and «• hour in each cell. Observe that, 

due to the fact that, the probabilities and the areas are the 

same for all the cells and the effort is being split evenly 

among them, the density of effort is the same in the whole 

search area. So, it can be computed as: 

7   Vt  100X2 . 1 
zj  Ä" 77ÜOT IG 

Where the total time (t=2 hours) was used and the total area 

(4 X 30 X 50 * 6000 sq. mi.). Sy using this density of effort: 

1 IV        15 1 P{Z) - i    Z     [1-EXP(-^)] « 1 - EXP[-£I = 0.394 
J  ■ 

Now,  suppose that the probability distribution is given by 

0.4    ij j  -   I 

0.3    ij j  ■   II 

0.2    ij j  «  III 

0.1    ij j  -   IV 

20 
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And recall  that the maximum effort Is already known.    The 
00( äWäiUbU  effort is ^^  - 200.  Then, (I-IX) becomes: 

IV 
MA X  Z    P.   n-EXP(-WZj 

J-I J J 

s.t. 

IV 
I  A. 2, < 200 

j-I  J  J " 

The next point will be to consider several ways to allo- 

cating the effort or several functions I,, and see what 

happens to the probability of finding the target: 

A. To divide evenly among the cells or 

And 

Jj - ^ . je (1, II, III, IV} 

IV 15 P(Z) *    l    P [l-EXPd 4|)] = 
j»I J        3Ü 

0.4 [1-EXP(- )|)] ♦ 0.3 [1-EXP(. ]|)] ♦ 

0.2 OEXP(- ||)] + 0.U1-EXP(- ||)] « 

1 -EXP(- I)   '  0.394 

B.  To spend all effort In cell I or 

100X2 
1500 

otherwise 

If  j-I 

21 
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and 

P(Z)   • 0.4 [1-EXP(- 2 {5
15  )]  - 0.346 

C.    To split evently the effort between the cells  I and 

II or: 

and 

100 XT, 1 
TSTTB fg-    If   jc (I. in 

0     otherwise 

P(Z)  - 0.4 [1-EXP(- ||)] + 0.3 [1-EXP(- ||)] 

0.4431 

D.    To divide the effort proportionally to the probability 

of each cell  or 
rL1^48 .  0 0533   if j s  j 

^fgL36  a  0-0399    1f J  '  II 

rVi 1.66 X 24 
 TTÖTT" 0.0266   If    j «  III 

1-6?fcL
12  =  0.0133    if     j  »  IV 

Where  1.66  Is  the speed  In miles  per minute and 48,  36,  24, 

12 the minutes  spent In cells  I  to  IV respectively.    The pro 

babllity  Is: 

P(Z)   =   (0.4)   (l-EXP(-0.8)]  +   (0.3)   [l-EXP(-0.6)]  + 

(0.2)  [l-EXP(-0.4)]  +   (0.1)  [l-EXP(-0.2)] « 

0.4402 

22 
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E.    To divide evenly the effort among the cells  I,  II  and 

III or 

7        VW 40 150066 - 0-0442   1f    JE{1' "•  III} 

J    Sl 0    otherwise 

and by similar calculations 

P(Z)  = 0.4356 

F.  To divide the effort proportionally to probability, 

among cells I, II and III; do not place any effort in cell IV 

or 

' "ml'66 - »on H  J.I 

40^0^
66  -  0.0442    If    J-  II 

27ISöO'66 a 0-030 1f  jrI11 

0    If     j  =   IV. 

v»-< 

and the probability Is 

P(z)  « 0.450 

The table In  Figure 8 summarizes  the results  reached  till 

now,  by the use of six courses of action. 

■ 
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ALLOCATION 

e 

i 
F 

PROBABILITY OF 
FINDING THE TARGET 

P(A) - 0.3940 

P(B) - 0.3460 

P{C) - 0.4431 

P(D) • 0.4402 

P(E) - 0.4356 

P(F) - 0.4500 

Figure 1-8 

It can be seen that for different allocations, the pro- 

bability varies In a wide range, (the range could be wider 

If some less obvious allocation was chosen, say, to spend all 

time In cell IV), and that common sense by Itself Is unable 

to provide any guidance, even In the simple example we are 

using.  For, the best result achieved was by placing no effort 

In cell IV, which does not seem very wise at a first sight. 

Furthermore, there Is not any procedure to know If we can do 

any better, than the one done with allocation F, because 

there are Infinitely many possible allocations and we have 

only checked six. 

In the next section, a specific procedure will be considered, 

which works very well In most cases. 

Another point seen In the example, Is that the same 

amount of effort (200) has been used In all six allocations. 
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It can be said that all of them "cost" the same, but "F" 

gives a better "return" than the others. In fact. It can be 

defined 

, 

1 AJ ZJ J-I J J C f) 

As the cost of allocation Z., and C (Z) will be used to 

denote the function and "C" to denote the values It takes. 

Then, generalizing (1-1), the search problem can be set as: 

MAX P(Z) 

s.t. 

C (Z) < C 

(I-X) 

Or putting It In words, on allocation Is desired, that Is 

a solution for the optimization under constraint problem 

(I-X). 

B.  POSTERIOR TARGET'S LOCATION DISTRIBUTION 

Returning to the example given. It can be recalled that 

P. was defined as the probability that the target is located 

in cell J. However, these probabilities are computed before 

any search effort Is placed In the S.A. Once, some effort Is 

placed, those values no longer hold, for after each Increment 

of effort placed In a cell without success, the probability 

that the target Is In the searched cell decreases, and, by 

consequence, the other cells probabilities will be Increased. 
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Then, Pj can be said as the probability associated with cell 

j after some effort was placed In the S.A.   "P,"  Is called the 

prior probability and "Pj" the posterior probability,  and the 

corresponding distributions prior and posterior target  loca- 

tion distribution,  respectively. 

From probability theory, Bayes*   theorem Is recalled,  (for 

demonstration see  [4]), and by Its use posterior probability 

Is computed as follows:    Suppose a search  has been made using 

allocation and that we did not find the target.    Then: 

k " J 
P|c  [l-B(Zk)] 

(I-XI) 

I     P.   [l-BUJ] 
j-I     J J 

Where the numerator stands for the probability that the target 

is located In cell "K", and Is not detected, and the denomina- 

tor the probability of no detection In any cell. 

For example, suppose a search was made according to 

allocation "B" and failed to find the target after the two 

hours established.  The posterior distribution Is computed: 

Pk [EXP(-ZkW)] 
Plc " 11  

E P. [EXPC-Z^)] 

Then: 

'  P, 
(0.4) [EXP(- i^i)] 

(0.4) [EXP(- ^-n + 0.6 
0.08 
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II 
0.3  

(0.4)  [EXP(-^)]  + 0.6 
0.46 

Pjir  -  0-2gy1e  • 0.310 
111       (0.4)  [EXP(- ^i)] + 0.6 

iV 
0.1  
im (0.4)  [EXP(- ±y^}  + 0.6 

0.153 

The table below displays  the effect  on the  target position 

distribution In two hours of search In  cell  I 

BEFORE 

Pj  - 0.4 

PJJ - 0.3 

PIII ' 0-2 

PIV - 0.1 

AFTER 

Pj -  0.080 

PJJ   -   0.460 

PJJJ  - 0.31O 

Pjy  -   0.150 

Almost all  the  probability mass which was  In cell   I In 

the very beginning, was  transferee! to the other cells.    There- 

fore,  If there Is Jiore time left to continue the search, It Is 

reasonable to transfer the effort from cell  I,  because It  Is 

almost Impossible  the target Is located there.     Indeed, a  very 

Intuitive way of allocated effort Is to place It where the 

probability of success Is higher.     If the  search starts In the 

cell with highest prior probability, and  the criterion of 

placing the next Increment of effort In the cell   wich  highest 

posterior probability Is  used,  an allocation Is  defined.    As 

will be seen  later,  this  allocation  Is In most cases,   (including 
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the one dealt with), a solution to the maximization problem 

(I-IX). Applying this procedure to the example given: The 

search starts In cell "I" and stay there until another cell 

shows a higher posterior probability than cell "I." Due to 

the equality of the cells areas It Is obvious that the next 

step will be cell "II." To compute for how long the search 

will continue In cell "I" only, consider that after placing 

a density of effort e.   In cell  "I," the  posterior probability 

Is: 

0.4 [EXPMSe^] 
PI  " (0.4)  LEXP(-15ei)J +  Ö.3 + Ö.2 +  Ö.1 

And cell  II 

0.3 
II      (Ö.4) [£xf»(-15e1)J + n + Ö.2 + Ö.1 

We want e,   such  that 

pi ■ ru 

Therefore 

0.4 EXP   [-156^   - 0.3 

or 

in(^) 

—rc— 0.01918 

From the definition of effort density we know: 
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Then, 

t.^i 

In this case 

Alel       30X50X0.01918 0.28770 hours 

The posterior distribution, srter e,: 

0.4 EXPC-ISe^ 3 
PI "  (Ö.4)   LEXP(-15ei)J + Ö.5 "7 

PII  " Ö.4 EXPC-lSe,) + Ö.6 " y 

I        ,  0,2  _ 2 
PIII      Ö.4 EXPI-lSe,) + n      ? 

:        . 0.1  3 1 
KIV        0.1 EXPC-lSe^  +  0.6      ? 

Now, In accordance to the procedure chosen, the effort 

must be split evenly between cells I and II until another cell 

(in this example cell III) shows a higher posterior probability. 

Then, for computing tmt 

PI "  PIII 

jfcl EXP  [-ISeg]   

2({k|)   EXP   [-15e2]T|+ J 

Where P4 stands for the posterior probability of cell "j 
<v ^# «w 

after e« has been placed.  Equating Pj or PJJ to PJJJ* 

(J7I)  EXP  [-15e2]  - § 

nCi      ? t   c i    i 1 i 

— A_ki I   1   UM ±m 



0.027 

because, as always, the denominators are Identical. Then, 

In (|) 
e2 i— 
2      15 

And the time Increment 

(A,  + A9)  e 
e. 1       "2'   ''2 .   2X30X50X0.027 

100 
0.81  hours 

To be spent half In cell   I and half In cell   II.    Tl:e new 

posterior distribution  after the density eg  Is: 

PI  "  PII  ' PIII in 
(J7I)   EXP  [-15e2] 2 

2   (JTI)   EXP   [-ISeg]  + f ♦ ^ 

IV 

1 
7 

t(|*fj   EXP   [-15e2]   + | + J 
1 
7 

In the same way we compute c^, which Is the effort density to 

be placed In cells I,   II and  III  before moving to cell  IV. 

PI  " PII " PIII 3(f EXP  C-ISej]  + } 

(f)  EXP   [-1563] - } 

and 

c3 
In  [l] 

15 
0.04621 
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Observe that, In the example given, there Is a limit of 

two hours to perform the search. Then, all 9, and 0-, can be 

used, but only a fraction of 03, that will be called 6^. It 

Is obvious that: 

•1 • t • (t* ♦ ••) • t • (0.28770 - 0.81000) 

> 0.90230 hours 

So, the time to be spent In each cell will be 

6 3' 
t} ' Q] * T" * T" ' 0-993i7 hours 

»2 
■ 
^ 

e3 r -  0. 70576 

»3 
■ ?- 0. 30076 

'4 
■ 0 

Where Hj" stand for the total   time  In cell   "j".    Observe 

also that t.=Z.  In the example given, due to the numbers 

chosen.    Hence the probability of finding the  target can be 

computed as 

P(Z) ■  (0.4)  Cl.EXP(-t1)]  + (0.3) [l-EXP(-t2)] + 

(0.2)   D-EXPf-tj)]  + (0.1)  [l-EXP(-t4)] 

■  0.4553 

31 

■ j -^w 



Which Is  better than any other of six allocation tried In the 

last section.    In fact, as said  before. It Is the best that 

can be done under these circumstances.    Finally,  It Is 

interesting to observe that using the procedure above.  If for 

any reason there Is a need to stop before all  the  Initial 

effort available Is gone,  the M.O.E.   has still  been maximized, 

under the new and smaller constraint.    On the other hand,  if 

at the end of the operation more effort Is available, then 

the procedure chosen need no change;  the search continues by- 

placing the effort where the posterior probability Is highest. 

Therefore, the procedure  has a  sort of independence In  relation 

the constraint.    This point Is  a very Important feature  In 

real world's  operations   (a change in  the weather,  as example, 

can determine the end of search)  and characterizes what will 

be defined later as an UNIFORMLY OPTIMAL SEARCH PLAN. 

C.     SWEEP WIDTH 

In  the preceding section, a quantity "W" equal   to 15 miles, 

was used as  a distance within which the sensor will  detect a 

target with  probability  1.     In  the real world however,  things 

are not so simple.    From a rigorous  point of view,  the detec- 

tion ability of a sensor can only be described by a random 

variable which associates to each distance a probability of 

detection, for a given type of target, a given condition of 

propagation   (light, sound.  Infrared,  radar waves,  etc.) a given 

level  of personnel's aptitude and a multitude of other, perhaps 

less Important,  factors.     It should be obvious that it  is not 

.^ ±m 



and 

9. 
(A, ♦ A2 ♦ A3) €3 

1 

1 

3X30X50X0.04621 

100 
« 2.07945 hours 

To be spent one third in each one of the cells I, II, and III 

The posterior distribution after e3 is: 

PI ' PII ' PIII ' PIV 

(f) EXP [-1663]   } 

4 (f) EXP [-15 £3]  5 

Figure 9 displays the variation of the cell's probabilities, 

due to the application of («• e«, and c* 

4 

2 

3 

1 

Before the 
Search 

2 
7 

2 
7 

2 
1    7 7     1 

After e. 

3 3 
? t 
2 1 1    ^ t    1 
After e 1 

1   1 
- 

1 
- 

1 1 I 
1 1  1 

After c. 

Figure  1-9 
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easy to obtain the distribution of such a random variable. 

In fact, in some attempts to derive the probability of detec- 

tion for search radar, considering a given distance, the 

variance of the sample was so big, tMt the corresponding 

confidence Internal for the estimate was wider than would 

reasonably be acceptable. The way normally used to overcome 

such difficulties. Is by means of a lateral range curve, from 

which a SWEEP WIDTH Is derived. 

Consider Figure 10 where the vertical lines represent the 

target's paths. The distance between the sensor and the 

Intersection of a vertical line with the horizontal axis. Is 

the lateral range of the corresponding path. 

N 

-e— 

Figure 1-10 
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If several  targets are passed through each path and the 

percentage of those detected computed, no matter in what point 

of the path It happens, this percentage can be taken as  the 

probability of detection of a target for which the closest 

point of approach is that lateral  range.    By plotting those 

probabilities  against distance, the lateral   range curve  for 

the sensor In  question  Is obtained.    An example of lateral 

range curve for a radar,  Figure 1-11  shows: 

POO 

1 

*  X 

Figure  1-11 

Observe that the lateral range curve does not represent 

a probability distribution, observe also that the probability 

drops near the origin. This is due to the sea return. 
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The SWEEP WIDTH, which will be denoted by W Is the area 

below the lateral range curve. The "W" used In sections I and 

II corresponds to a lateral range curve as the one In Figure 
W 12, where R = j is called the range of a definite range law 

of detection, a simplification very much used In real 

situations. 

Figure  1-12 

Although  In chapter  II  this  subject will   be discussed  again, 

it Is  Interesting to remark  now,  that In  some  situations, 

(chiefly In under-water search). It  Is necessary to treat the 

sweep width as  a  random variable. 
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D.  MOVING TARGETS 

Until now, all the derivations and concepts presented In 

this paper, were developed under the assumption that the 

target remains stationary during the search.  If It Is wanted 

to consider moving targets, the following remarks are Important 

(a) The problem of effort allocation under these circum- 

stances, is a very difficult one, and for most of the cases, 

has not been solved yet. The reason for this is that the 

prior probability distribution for the target's location is 

modified continuously in time, in an unknown way, by the 

target's movements. A case where the problem is tractable 

is where the target motion is deterministic, and with known 

parameters.  In this case, the target "drags" the probability 

distribution in a known way, and as will be seen later, it is 

possible to solve the effort allocation problem. 

(b) If, however, the search is to be made at random, then, 

the preceding discussion for the random search applies, what- 

ever prior distribution is assigned to the target's location, 

and for any kind of target's motion. The rational is that, 

if the sensor's movements are at random then any fraction of 

the search area is equally likely to be scanned at a given 

time, and evidently it applies to the place where that target 

is at the considered time. 
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E.  THE CONTINUOUS CASE 

Suppose that Instead of cells the S.A. Is thought as a 

continuous set of points. Then, Instead of cells' probabili- 

ties we will deal with points' probabilities, or more exactly, 

with a continuous bidlmensional probability distribution. 

Observe that In this case, most of our definitions should 

be reformulated. An allocation, for example, will be a function 

which assigns to each point of the S.A. an effort density. In 

a similar way L.D.F., and so on, must be redefined. This will 

be done later, but for the time being two points must be 

emphasized: 

First, for theoretical purposes, the continuous approach 

Is better, not only because It Is closer to the real situation 

(after all a S.A. Is continuous set of points), but also 

because of the mathematical tractability of continuous function, 

which permits us to derive general results and theorems. 

Second, for practical purposes, the continuum of the S.A. 

Is approximated by a large number of small cells and then the 

theory developed through the continuous model approximately 

applies. 

Hence, all the Intuitive discussion of I-A to I-D are 

entirely justified and the more sophisticated discussion In 

following pages will have the sole purpose of Improving 

foundations. 
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II. BASIC THEORY 

Under this heading, what Is aimed Is not only to 

formalize from a mathematical point of view the Intuitive 

notions Introduced In I, but also to provide a general 

overview of the main results of search theory. 

A. SEARCH SPACE 

As was mentioned before, the target's location 1s 

described by a probability distribution.  More precisely, 

It Is said that this location Is a random variable. 

The range of this random variable, (or better, the 

essential range, see [4] ), which Is some subset of the 

plane. Is called the search space. 

Observe that the search space can be Infinite, (as will 

be shown for the case of the bldlmenslonal normal distribu- 

tion, for example), and this Is not a convenient feature, at 

least In practical situations. Because of this, search 

area Is defined as: 

B. SEARCH AREA 

Is the subset of the search space where, search operations 

will be conducted. 

As was shown In definition II-A, the search space, being 

any subset of the plane, can In fact be very pathological. 

Consider, as an example, the search space represented In 

Figure II-l. 
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Figure il-l 

The concentric circles stand for isoprobability curves. 

It Is a case of a Infinite search space.  If the dashed 

area encloses a satisfactory amount of probability for 

the purposes sought» the operations can be confined to that 

same area. The dashed portion of Figure 1 Is then an 

example of search area. 

Finally, In accordance with the model used, the search 

area can be dealt with as a continuum, or It can be divided 

In an arbitrary number of cells, assigning to each one the 

probability mass It encloses. Furthermore If cell "k" 

encloses probability P. It Is assumed that this amount of 

probability Is uniformly distributed In the cell. 

C.  LOCAL DETECTION FUNCTION 

Let "x" be a point In the search area and "I" the effort 

density placed there. The function which to each pair (x.Z) 

assigns the probability of detecting a target located In x Is 

. 
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called a local detection function. If points are replaced 

by cells and for sake of notatlonal consistency "x" by "J" 

In the preceding lines, the definition given holds for the 

descrete case. 

Note that "x" Is a bldlmenslonal vector, x«(x,> x,) and 

"Z" a non-negatlv« real number. The L.D.F. will be referred 

to as B(x,Z). This notation takes In account the possibility 

(very remote In real world problems) of different forms of 

L.D.F. In different cells. 

D.  L.D.F.s AND DETECTION RATES 

In I two L.D.F.s were derived one for systematic and 

the other for random search. Here, a more precise approach 

will be used to obtain a general formulation from which the 

above mentioned L.D.F.s are particular cases. 

Consider a detection system which operation consists of 

a series of Instantaneous observations, for example, measuring 

a distance to a submarine by a step scanning sonar. It Is 

called a discrete system. The mentioned observations will 

be called glimpse and let "g" denote the probability of 

detection on a glimpse.  If "g" Is a constant, the glimpses 

are Independent and If "N" denotes the random variable "number 

of glimpses until detection occurs". Then: 

P (N-n) - g (l-g)""1 (n-i) 

P (N<n) - 1 - (l-g)n (||.||) 
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Because "N" Is evidently a geometric distributed random 

variable and (II-I)  and  (II-II)  are respectively Its  probability 

«ass function and cumulative distribution function.    Suppose 

now that the system used Is a continuous one.  i.e. It does 

not operate only at discrete points In the time, but Instead 

it may reach detection at any moment.    Rather than define 

and Instantaneous probability as done before,  let  r    be a 

"detection rate" defined In such a way that yAt is the 

probability of detecting the target during an Interval  of 

length At, given It has  not been detected before.     In this 

case let HT" be a  random variable which stands  for the time 

at which detection occurs.    In analogy with  (II-II),  It Is 

Intended to find: 

P  (t) - P  {T<t) (II-III) 

consider 

Q(t) -  l-P(t)  -  P(T>t) (II-IV) 

the "survival  function"  of "T".    It Is clear that the relation 

Q(t+At)  «  Q(t)   (l-yAt) (II-V) 

holds, by arguing as  follows:   Q(t+At)    Is  the probability 

of the event (detection does not occur by the  time t+ At), 

which Is  logically equivalent to the Intersection of the 

events A=(detection does  not occur by time  t)   and B=(detection 

does not occur during  the interval  (t+  At )). 

But by definition: 

P(A)  » Q(t) 

and recalling that the  Interval   (%.♦  At) has  length  "At",  and 

that "yAt" stands  for the conditional  probability that detection 
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has  occured during the  Interval» given It has  not happened 

before: 

P(B/A)   »   l-yAt 

from probability theory: 

P(AnB) - P(A)  P(B/A).  hence (II-V) 

A simple manipulation of (II-V) yields: 

q(mt) - q(t) . . YQ(t) 

or In the limit when At "* 0 

Q'Ct) - - YQ(t) 

whose solution Is: 

Q(t)  - Q(0)  EXP  [-yt] 

Since 

Q(0) - 1 

Obviously 

P(t)  «  1   - EXP  [-Yt] (II-VI) 

Observe, however, that both  (II-II) and (II-VI)  have been 

derived under the assumption that "g" and Y  remain costant 

all   time.    If Its variation with time Is to be  taken In 

account, the expressions can be modified by writing: 

P(N<n) - 1  -1?1   (1-g^ (II-VII) 

for the discrete case, or 

P(t) « 1  - EXP  [- /* Y(t) dt] (II-VIII) 

for the continuous, where  "g^" stands for the  detection 

probability on the 1       glimpse, and Y(t)  is a time dependent 

detection rate.    Although  there are many reasons by which g 

and or "Y" do not remain constant In time  (a human factor 
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reason Is the fact that the device's operator "learns" while 

he Is watching the display), only the distance variation will 

be considered as  a source for the time dependence of "g" or 
NYN.  Thus, If by denoting r,  as  the distance to the target 

at the time of 1th glimpse, and "r (t)" the distance at time 

HAN 

94 " g(0 'i i 

and 

Y(t)  - YCr(t)] 

By substituting In  (II-VII)  and (II-VIII) 

and 

P(N<r) - 1 - If (l-g(rj) 
1-1     1 

(II-IX) 

(II-X) P(t) - 1 - EXP [- r    Y [r(t)] dtj 
o 

notice that the probability of detection during the Interval 

(tg, tg +dt) can be computed If It Is a product of probability 

of no detection before tg (which Is given by 1 minus formula 

(II-X). times probability of a detection during "dt" (which 

is Y [r(t0)] dt), or: 

Y Cr(t0)] dt EXP [- / 0 Y[r(t)] dt] 
o 

but, on the other hand.  It Is also equal  to the difference 

thus 

and 

P(t0 ♦ dt) - P(t0) : P' (t0) dt 

P' (O dt - Y CrUJ] dt EXP [- /  Y [r(t)] dt] 
g o 

P'UJ • Y [r(t0)] EXP [- / 0 Y [r(t)] dt]  (II-XI) 
0 
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P'Ctjj) Is the value at t0 of the density function of random 

variable "time until detection". 

In Figure II-2 , which Is taken part from [1], part from 

[5] five examples of YCr(t)] are shown: 

A) case I applies when (r) reaches a finite maximum at 

distance zero: 

B) case II Is when the maximum Is Infinite, 

C) case III shows the effect of sea return shifting the 

maximum away from the origin. 

D) case IV Is when the probability Is one when r<r . 

E) case V Is when the so called definite law of detection 

occurs.  In this case, detection Is sure to occur as soon as 

the target reaches the dashed region and Is Impossible outside 

of It. 

*uof to* 

Figure II-2 
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Another Important form of detection rate used for the case of 

visual detection Is "the Inverse cube law of sighting", 

whose expression Is: 

Y (r) ' TT^—TTJTZ (II-XII) 
(h^ + rV' 

Where  "h" Is  the observer's height,  "k" a constant which 

depends on fixed factors  as  contrast of wake against ocean, 

observer's  ability, metereologlcal  conditions, area of the 

target's wakes etc and "r" Is the distance.    The above 

formula is derived under the  assumptions that the observer 

detects the target by seeing its wake, and H Y(r)"  is propor- 

tional   to the solid angle subtended at the point of observation 

by the wake. 

When  "r" is much large  that "h"  (II-XII) becomes: 

(II-XIII) 

The details concerning the derivation of (11-12)  are in  [1]. 

Y (r) » H 
rJ 

E.  LATERAL RANGE CURVES AND SWEEP WIDTH. 

Although some nice expressions for Y(r)were derived in 

last section, nothing was said yet about how to deal with r, 

the distance between the target and the sensor. 

It is apparent, however, that it is very difficult to keep 

track of the distance variation when performing a search. For, 

If there is relative motion between target and sensor, at 

each instant, r, will assume a different value, and therefore 

P(t) will depend in the law of variation of r, as function of 

time. This is extremely inconvenient, because even for very 

simple types of motion, this problem can be an extraordinarily 

difficult one. 
46 
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In order to avoid the mentioned difficulty some theory 

must be developed. Suppose there Is a need to compute the 

probability of detection along a given track. A rectangular 

(x,, xO coordinate system, will be adopted» with the sensor 

at the origin (0,0). Notice that a relative motion approach 

is being used. The scalar distance from the target to the 

sensor, is a function of the time and is denoted ad r (t). 

If the track that Interest is the one in Figure 3, it is 

easy to see that r(t) « ^Z  (t) + XZ (t) . 

>U<,^ 

*•• C^xJ) 

V. 

Figure II-3 
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At this point It Is convenient to define a quantity 

"F", which Is a characteristic of each possible path, and 

which Is known as the sighting  potential  along the considered 

track.    In order to make  clear, the dependence of the sighting 

potential  on the track  It will  be denoted by F(.), where the 

dot Is to be replaced by some Indicator of which track Is 

being considered at the moment.    Example:    Suppose  the paths 

•re numbered.    Then F(l)  refers to path 1, and so on.    By 

dlflnltlon: 

F <•>•{.  -<c ^ (t) J x| un dt 

For the case of the continuous  looking, and 

F  (•) - -^ in [1-,  (  /"I (t) ; x| (t))] 

for discrete model. By the use of the F(.) concept, equations 

(II-IX) and (II-X) may be united Into 

P(.) - 1 - EXP [-F(-)] 

Which gives the probability of detection along the considered 

track, no matter If a continuous looking Is being used, or 

separate glimpses. The verification Is a matter of trivial 

algebra.  It Is Important to state the property of addltlvlty 

which the sighting potentials have. Suppose the probability of 

detection along at least one of two Independents tracks (say 

track 1 and track 2) Is to be computed, then: 

P(l) = 1 - EXP [-F(l)] 

P(2) « 1 - EXP C-F(2)] 
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The only way to fall In detecting Is to fall In both paths or 

1 - P(l or 2) « [1-P(1)] [1-P(2)] 

bit 

Cl-P(l)] [1-P(2)] - (EXP[.F(1)]) (EXP [-F(2)]) - 
EXP C-(F(1) + F{2))] 

then  P(l or 2) « 1 - EXP [-(F(l) + F(2))] 

what means that If F(1) and F(2) are known, just by adding 

them, the sighting potential along the total path Is obtained. 

The addltlvlty applies to any number of paths and can be 

useful to deal with complicated tracks, by decomposing them In 

a series of simpler ones, whose potential can be easily computed 

and Just by adding the sighting potentials. 

Consider now the point labelled "CPA" In Figure 3. The 

initials stand for closest point of approach, and the distance 

x from the CPA to the sensor. Is the target* lateral range. 

Observe that y{r) Is a function of the distance and therefore, 

for all practical purposes. It Is zero, beyond a certain 

distance. Thus It only makes sense to consider the variation of 

Y(r) for values of r between x and r such that Y(r)s0 If r>r . 

Suppose that we replace the actual path In figure 3, by Its 

tangent at the CPA. The straight line being as long as we 

want, all distances between x and r can be considered. On 

the other hand, the linearity of the path makes the problem 

much simpler. For example to compute F(.), Instead of an 

Integral along a path, a common Rleman Integral Is enough 

Finally, observe that when the relative velocity between sensor 

and target Is constant, and the most common example of this 
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case  Is  a sensor moving at constant velocity and a stationary 

target, then the relative track is actually a straight line. 

Consider now Figure 4, where a straight line path Is 

represented. 

Xj 4» •f   (*.; 4) 

t Cx,,»^ 

l*T#«*t.   ftAM«r 

Figure  II-4 

as It Is  already known: 

"») - ^ (t) + 4 (t) 
but now x, (t) Is a constant, "x" the lateral range and as seen 

In figure 4, Is the distance of the closest approach between 

the target and the sensor. Then, 

'<*> ■ V ♦ «I (t) 
furthermore as the direction of the  relative velocity vector 

Is parallel  to the  "x2" axis  (the axis were chosen In this 

way). 
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r(t) - /x2 + x2t2 

t*    
F(-) • /| Y (/x2 J v2t2) dt 

n 
F(.) - - E In [l-i (/x2 J 2 2)] 

For the continuous looking case and separate glimpses case 

respectively. 

Observe that now, depending on the form of the detection 

rate, both the Integral and the sum above looks like math- 

ematically tractable. In fact for many cases they have been 

evaluated In simple mathematical form.  The Interested reader 

can see [1] for a complete discussion.  For the sake of 

further simplification, let the case where the path Is an 

Infinitely long straight line be examined. In this caset'-*--« 

and t"^» and the sum, which Is used in the definition of the 

separate glimpses cases, becomes a series.  In both cases 

however, F(.) Is now a function of the lateral range only. 

Thus It Is more appropriate to write F(x) Instead of F(.). 

The probability of detection along such a path, which by the 

same reasons Is also a function of "x" only, can be computed 

P(x) » 1 - EXP [-F(x)] 

which defines a function called a lateral range curve.  There- 

fore, even though we cannot truly handle general paths, we can 

approximate them by use of P(x). 

Hence forward. In this paper only the continuous looking 

case will be dealt with. The Interested reader can consult 
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[1] or [5] for results  and discussion concerned to the separate 

glimpses  case.    As It has been shown before 

F(0 -    tv    Y (V + vJt2) dt 

when    t'-»--» and t"-»- ■ : 

F(x) -    /   Y (/x2 J v2t2) dt 
-.00 

or, considering that 

vt  ■   Xg 

It Is obtained 

F(x) - 1   /    Y  (/XZ ; XZ)  d x .«r + xy  ~ "2 

and 

40 

P(x)   -   1   -  EXP   [-i    /      Y   (/XZ  ;       Z)   d  x2] 
v     -. x" +  Xg-'   '    2 

Note that P(x) Is by no means a density function. 

EXAMPLE I 

LATERAL RANGE CURVE FOR THE DEFINITE RANGE LAW: 

In this case: 
• If  r<r. 

Y(r) 
0    otherwise 

recalling from Figure II-5 

Therefore: 

F{x) 

00   1f    xlro 

0   If     x>r# 
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And 

P(x) 
1    If   x< r0 

0    If   x> r 

and Its graph: 

Pcx^ 

1 

Figure II-5 

EXAMPLE II 

LATERAL   RANGE  CURVE  FOR THE   INVERSE   CUBE   LAW 

The detecting  rate Is 

Y(r) 

or 
? 

t( a : jti) - (TTTW71 

and 

F(x) K      *    dx2 2K 
' '- (x ♦ 3P7i - z 

so that 

P(x)   -   1   -  EXP   [-  ^y] 
Vx£ 
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and Its graph 

*i<W 

Figure II-6 

Observe that In this case P(x) depends on the speed, and 

assuming all other factors remain constant, the probability 

of detection at any lateral range decreases as the speed 

Increases. 

As It has been seen before In two example. It Is not very 

difficult to obtain a compact mathematical form for P(x). 

Furthermore the parameters Involved ("r " In example I and 

"k" In example II) can be estimated by performing the experi- 

ment described In chapter I. Now, In a search situation, the 

target lateral range Is not known for sure.  For, If the 

opposite Is true, then no longer Is necessary to search. To 

take this uncertainty In account, a random variable X, Is used 

to described th^ lateral range. 

Suppose that It Is desired to compute the probability, 

P, of detecting a target In a given search no matter how long 

It takes.  Recall that p(x) was defined as the probability of 

detecting a target, given that Its lateral range Is x, and 
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observe  that the detection  can occur at any point on the 

Infinite straight line path  used to define  X, and thus, by 

any time.    Fu-ther,  if X Is  a random variable, and Its  density 

Is  denoted by  fx(x)     •  then, from probability theory: 

f •    /    P(x)  fx(x) dx (II-XIV) 

Which Is   a very  useful  expression, as   the next examples will 

show. 

EXAMPLE  3 

Assume that X  is  uniformly  distributed in the  interval   (0,D). 

This  Is  the case of a  barrier with length 2D,  in  the center 

of which   the sensor is  located.     If a target tries to trespass 

such a barrier,   and is  equally  likely  to cross it at any point, 

then the  distribution  of X  is the one mentioned.    Or: 

fx(x) 1 J-     if   0<x<D 

o    otherwise 

Where "D" stands  for a distance such  that: 

P(x)   -  0    if     x>D (A) 
what means that the detection system is  not effective at 

ranges larger  than D.     In this case (II-XIV)   is: 

1 D P -  ^      I    P(x) dx 

or what amount  to the   same  due to equation  (A): 

P - J-     /    P(x) dx 
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But, the Integral  In  the formula above Is Just half of the 

area below the  lateral   range curve.    By definition, this area 

Is  called "sweep width", or In symbols 

09 00 

W • 2    /    P(x) dx -    /    P(x)  dx 
o -• 

so the formula for the probability of detection becomes 

TIT 

Observe that the  formula above Justifies  the use that way 

made of "w" In  I.    For, if  2D is  distance such  that P=l   the 

definition of "w" used In the mentioned example Is  reaflrmed. 

Figure 7 below pictures the  situation. 

s 

i :<y ' 2D—^^—M 
/ / / 

Figure  11-7 

\/   /   / *%£">    / S   / ' 

Observe that the dashed area is swept with efficiency 

w/2D and that Is  the motive  of the name sweep width.    Under 

the same assumption about the lateral   range distribution, 

two expressions  for "w", will be  derived: 

SWEEP WIDTH   FOR DEFINITE   RANGE   LAW 

In this case,  recalling from example 1: 

P(x) 
fl   If     x<r0 

lo    otherwise 

Then 

W - 2 / 
o 

dx 2 r. 
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which Is the sweep width used as example In I.  It Is also 

twice the dashed area In Figure 5. 

EXAMPLE 5 

SWEEP WIDTH FOR INVERSE CURVE LAW 

In this case as established In example 2 

2K- P(x) - 1 - EXP [- -^7] 
Vx^ 

Then 

2 / P(x) dx 
0 

2 /  {1 - EXP [- -^]) dx 
0 Vx£ 

The result can be obtained by the use of Integration by parts: 

w - 2  /nnr 

In real life situations, the track's lengths are not 

Infinitely long.  However, 1f they are long enough In the 

sense that the sensor's detection capability tends to zero 

beyond a certain point In the path, then the preceding dis- 

cussion applies. Suppose the length of the track Is: 

Y - xj - x^ 
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such that 

Y(r) - 0 

if r>v + (x;v •'^>v + ex;)2 

For any lateral range x«. For this kind of situation the time 

during what the target Is exposed to detection Is: 

Because after this time Y[r(t)] - 0, then, the detection rate 

along the path: 

but 

Pe tt 

so 

75T 

or, substituting the value of "T" 

. •  WV 

but 2DY Is the area swept by the sensor, then 

x = wv (II-XV) 
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Is the average detection rate along the considered path. Now, 

suppose a sensor with velocity and sweep width known and a 

target whose location has a uniform distribution In the search 

area.  If It Is known how many paths are Intended to be placed 

In the S.A. and the time spent In each one of them, then It Is 

possible to compute the probability of finding the target by 

a suitable combination of each track's probability, which Is 

a function of X. Considering that the sum of the time spent 

in each path can be easily transformed In a total length and 

then In a density of effort, that probability of detection 

can be written In terms of density of effort, which Is just 

the definition for L.D.F. Consider the following examples: 

EXAMPLE 6 

L.D.F. FOR RANDOM SEARCH 

Suppose that: 

(a) the target's location Is uniformly distributed inside 

an area "A" which is extremely large compared to the sensor's 

influence area. 

(b) The sensor's vehicle movement is such that any 

region of the area Is equally likely to be covered. 

(c) The tracks are mutually independent. 

(d) The search vehicle's speed is always the same. 

The preceding assumptions characterizes a random search. 

For this case the detection rate is a constant at any instant 

In time. For, due to the independence of the paths, the 

Instantaneous probability of detection is the same for them all. 
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By a reasoning, which Is  similar In all  aspects  to the 

one presented In II-E for the  sighting potential's cases, the 

probability of detection at or before time "t"  is 

P{t) -  1  - EXP  [-Xt] «1   - EXP  C-^] 

which  leads to the L.D.F. 

B(Z) «  1  - EXP  [-WZ] (II-XVI) 

that was already derived In I. 

EXAPLE 7 

L.D.F. FOR SYSTEMATIC SEARCH 

The general case of systematic searching by parallel 

sweeps Is treated In [1]. Now, here will be derived the case 

when "U" Is given by a definite range law and stated, without 

proof (which also can be found in [1]), the result for the 

Inverse cube law. For the first case recall that Vls!2r and 

that within such a distance the detection Is sure to happen. 

If "A" stands for the total search area, the portion of "A" 

which was not yet swept after time "t" Is 

A{t) 

A - WVt If 0<t<A 

o If y^ <t<« 

and by this time the detection rate Is 
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therefore the probability of detection by time  "t"  Is: 

P(t) 
1   - EXP   [- /    X(t)dt]  ' ^    If     o^t^ 

o 

If H71 <t 

which leads to the L.D.F. 

Wz  If  o<t<gv 

B(Z) 

1   If wV <t 

that agrees again with the one derived In I.  For the second 

case, the Inverse cube law, the sweep width seen In example 4 

was found to be 

w - 2 /?inr 

Through some more elaborate arguments than the preceding ones, 

but still relying In the same general principles, It can be 

shown that the L.D.F. for the Inverse cube law Is 

Vn B(Z) = 2 ♦ (Ji WZ) -1 (II-XVIII) 

Where * stands for the cumulative distribution function of 

the standard normal distribution. Now It Is possible to draw 

Figure 6, chapter I again, including the L.D.F. (II-XVIII). 

This Is done In Figure II-8 below. 
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Figure  II-8 

As was said before  In  I-A, the best situation Is  systematic 

search with definite  range  law, and the worst  situation Is  the 

random search case.    The actual  L.O.F., when  performing a 

systematic search, must be  situated between them. 

F.     THE DISTRIBUTION   OF THE   TARGET'S LOCATION 

The results  established In the anterior sections  depend 

In the uniform distribution of the  target's  location. 

However,  It Is  not always  the case that this  type of distribution 

can be assumed to describe the target's position.    The way to 

overcome  this difficulty Is  by means of a search grid which  Is 

constructed as   follows: 

Suppose a bidimensional   distribution Is adopted to describe 

the target's  location  and that its  C.D.F.  Is  denoted by  FfXjtXg). 
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Then the probability that the target Is located In cell 

Rk of Figure II-9 Is 

•    i 
Pk  » F(x1,x2)   - F^.Xg)   -  F(x1 .x2)  +  f{x}tx2) (II-IXX) 

[X^g] [X^g] [X^g] [X^Xg] 

Figure  II-9 

Divide the area"A"  under consideration Into "J"  non-overlapping 

cell  In  such  a way  that: 

J 
Z    P.  = 1 

j-1     J 

If we assume that for any "j" the probability "P." Is 

uniformly distributed Inside the cell "R^", then for each 

cell  all   the preceding discussions apply.    The mentioned 
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assumption leads to replace the original  continuous  distribu- 

tion by a discrete one.    If the size of the cells  Is  not too 

big, the  new model  Is  not very different from the actual  one. 

It is a  very common practice to center the grid's coordinate 

system In the highest probability cell   and set the  axis  parallel 

to the north/south orientation of the navigation chart.     If the 

domain of the  bidimensional   distribution  Is  Infinite, the 

S.A.  encloses  the desired probability to be  divided  In the  cells 

Evidently  In this case,  the  cells'  probabilities do  not quite 

add  up to  1.     Further details  are  found  In  [7]  and  [8].     Some 

examples   of distributions most often encountered In  search 

problems  will  be given below: 

EXAMPLE  7 

BIDIMENSIONAL   UNIFORM  DISTRIBUTION   (INDEPENDENT  X1   AND X2) 

Although this Is  a very well  known distribution.  It Is 

worth-while to state Its  formal  definition: 
vL -*. ib 

** 1 
I     « 

• 

as; ^i 

Figure  11-10 
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Consider the rectangle [a,b,c,d] of Figure  10.    A vector 

random variable  [X,,  X«]  has  a  bidimensional  uniform distribu- 

tion defined over [a.b.c.d,]  If Its  density function  Is: 

1 

f (x^Xg) 

[X^Xg] 

The C.D.F.   is 

(x,   - x^   (x2 - x2) 

0    otherwise 

If    xl   < xl  < xl 

x2 < x2 < x2 

F(x1,x2)  *    Z,1      Z,2    f  (x1,x2)  dx1   dx2 

[x1.x2]       xl       xl 
or be performing  ♦.he intergratlon 

[X^Xg] 

0    1j    x^ £ x1    or x2  < Xy 

F(x1tx2)  = / 

[x1x2] 

(x^x^  {x2-x2) 
 n 1 n 1— 

(x1   - x^   (x2 - x2) 

lXl    <   Xl    <    Xl 
if / and 

■I 
x2  < x2 <  x2 

/xl > xl 
f/        and 
\x2 > x" 2      A2 

Observe  that  in  Figure  10,   the C.D.F.   argument  is   repre- 

sented by  the  dashed region and  its   value   is given by  the 

ratio    between the  region's area und the  total   area,  as  the 

name of  "uniform"  intuitively  suggests.     Another point  is  that 

the marginal  densities  for X,,   and X2 are: 

fv    (x,) =    / 2    f  (x,M)  du = 
Al       ' x' 

1      [x1,x2] 

1 
-ii r 

(x1   -   x1 ) 
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and 

fv    (x,) •    Z.1  f (M xj du 
1 1 .2 

1 

If X|  and x2  are Inside the proper range and "0" otherwise. 

Then 

f (x^Xg)  - f (x^ fx    (x2) 
Xi ^ 

[x1.x2] ' 

and also 

F  (x^x,,)  -  F^d,)  FX2  (x2) 

[X^Xj] 

all  considering  the proper range,     r course.    The above results 

characterize the  Independence of the  random variables X,  and 

X2. 

EXAMPLE  8 

THE  BIVARIATE NORMAL  DISTRIBUTION 

Th^s  <s  a  very iseful  distribution  In  real   life  problems, 

for It Is  a well   known  fact that error distributions  are  In 

general  normal.     Navigation error can be  decomposed In  two 

components:     Latitude and longltudo,  and  If both are unlvarlate 

normal  their composition Is blvarlate normal.    Example:    If a 

ship In distress  asks for help and g1ver>  her last fix. It Is 

reasonable  to  use  this  distribution  to describe her position. 

By using  x,   to denote the east/west direction, x2 for the 

north/south.     M  for mean 6  for standard deviation and py ä2 

for coeflclent of correlation, the blvarlate normal density: 
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f   (x^Xg) 1 
2^ ZlTOy    Oy     (1-P     ) 

EXP  {- 7 [(■ 

xrMx 
2(1-PC)      "X, 

I)2 

x1-Mx        x2-Mx 

2P  ("^)   (^)   +   ( 

x2-Mx 

^)2]} 

If however It Is assumed that the north/south and east/west 

errors are Independent (which is common practice) then p=0. 

Furthermore if the distribution is centered in the datum then 

MY    »MY    ■ 0.    With these simplifications  the  above formula 
Al        ^2 

becomes: 

f tVz» - ^57-57 "" '■ * [ t57)2 + (5r)2]) 
A*    hq A^ AA 

Figure 11  shows,  the shape of fCx.x«)  and the contours of 
[X^g] 

equal probability, which are generally ellipses with the main 

axis laying in the coordinate axis, which corresponds to the 

higher variance. The contours are circles when 6V ■ 6V xl   x2 

«S.XS. 

Figure 11-11 
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Considering  that the values of the standard normal  CDF 

are easily available In many tables and that, due to their 

Independence 

F  (x^xg)   -  FXi   («,)  FX2(x2) 

[X^Xg] 

It Is very simple to compute any region's probability, In this 

particular case.  In reference to Figure II-9, formula (II-IXX) 

becomes: 

PK - [Fx {x\)  -  Fx (xj)] [Fx (xg) - Fx (xg)] 

But 
x-u Fx(x) - ♦ (gj») 

In this case M=0, then 

and 

Fx{x) • . (S-) 
A 

1 ll 
PK ■ [• i^-)  - * (^)] [• (jM - * (^-)] (*) 

1      "1      A2      A2 

Where 4, Is the standard normal CDF. In order to derive the 

dimensions of a search area for this case, the common usage Is 

to construct a rectangle, centered on the datum, whose sides' 

length are usually expressed In terms of standard deviation, 

and that encloses the desired amount of probability. This 

can be done by replacing In (*) Pk by the desired probability, 

and solving the equation backwards, taking advantage of the 

symmetry of the normal distribution. Figure 12 picture the 

case of a search area for a circular normal distribution. In 

this case (*) becomes: 
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X» X» XM 

[♦ (-# - • (- -in i* (4» • (-jn 

t« i-i) ♦ (-1-)] 

-x; 

t 

——■ 

____ ■^ >C. 

Figure  11-12 

And by consulting a table, the solution Is straight forward 

As Illustration, some  values are tabled below: 

Side Length 

1 Standard Deviation 

2 Standard Deviation 

3 Standard Deviation 

4 Standard  Deviation 

Probability Enclosed 

0.466 

0.911 

0.994 

: 1.0 

Finally there  is  another way of writing the density of 

this distribution which sometimes Is very helpfull.    It Is 

the polar from and the formula that will  be stated holüs 

for the circular case  (6W «6V ) 
xl    x2 

f  (r.e)  - -£-2- EXP [- -J^] 
2*0* 2a^ 
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Where, as usual 

Xj ■ r cos 6 

x- ■ r sen 0 

r   ^ 0 
0 < 0 < 2ir 

EXAMPLE  9 

MULTIPLE   SCENARIOS  DISTRIBUTIONS 

An Interesting problem which arises  In  searches on 

large scale,  (for example the search  for the  H-bomb  dropped 

accidentally  In  the  Spanish  cost In January  1966,  see  [7] 

for details)  Is  the problem of multiple scenarios. 

Suppose that from two different sources  of Information, 

two different datums  are  given  to the  analyst  In  charge of 

planning  the search.     Figure  13 pictures  the  situation. 

Figure  11-13 
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Even assuming a circular normal distribution, the problem 

of where to center It still remains. The best approach. Is 

to center a distribution on each datum and by weighting the 

reliability of each source by a number between 0 and 1, CRJ 

(which reads "credence In source "J"), obtain a distribution 

which then Is used as the target's location distribution. 

Consider Figure 13 and suppose that the probability In the 

dashed cell R. Is to be computed. From probability theory 

is recalled that: 

Prob (Rk) = Prob (Rk/DATUM I Is CORRECT) Prob (DATUM I 

Is CORRECT) + Prob (Rk/DATUM II Is CORRECT) Prob (DATUM II 

Is CORRECT) 

IF CRJ Is taken as the probability of datum j being correct, 

then: 

P(Rk) = P(Rk/I) CRI + P(Rk/II) CRII 

Care should be taken about the value of CRJ. This Is a 

very subjective matter, and can have an enormous Influence 

In the search. 

EXAMPLE 10 

OTHER DISTRIBUTIONS 

Although the normal and the uniform are the most usual 

distributions In search problems, there are, besides the 

multiple scenarios situations, other cases where they do 

not apply, at least In the straightforward way presented 

here. 
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Suppose, for Instance* that a position Is available from 

a target, say normally distributed around a datum, and a radio 

direction finder bearing, with a uniformly distributed error 

of k degrees to each side. The situation can be visualized 

In Figure 14 

Figure 11-14 

It Is not hard to Imagine many other analogous situations. 

In any case, however, the procedure Is the same, combining 

the probabilities by conditioning, to get a search grid. 

Sometimes, a computer Is needed, either because of the big 

volume of operations or even due to the analytical Impossi- 

bility of deriving the conditional distribution.  In this 

last case, a monte carlo method must be used (see[7]). 
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G.     SEARCH PLANS 

In I the  Ideas of allocation, and of the cost of an 

allocation were discussed.    Here, a more general   Idea of a 

search plan Is Introduced.     Consider a function M(j,^(t)) 

such  that: 

(a) M(j,4>)  Is  a allocation for each $ 

(b) M(j,*)  Is  Increasing  In ♦ for j«l....J. 

This  function  Is  called  a search  plan.    The   replacement of 

j  by  a  vector (x,,  x*),  leads  to the definition  for the 

continuous case.    Condition  a) means  that, for each cell 

(point)  the function M assigns a density of effort z, which 

depends also In <t>   , the amount of effort available.    Condition 

b)  Is  the formal  statement of the fact that It Is  Impossible 

to take effort out of a eel!   (point), once It was placed there. 

The definition of cost of an allocation carries  over to 

the  case of search plans.     In fact, for the discrete  case  It 

Is  the  same as  defined  In   I, while for the  continuous, 

the  sum Is  replaced by an  Integral,  an  It becomes: 

C(M(x,*) / M(x,*)dx 

Suppose  now that  4»  Is  an  Increasing function  of the  time, 

4=$(t).    The problem which was solved In  I, with the  track 

length measuring  the  effort,  and given by 

Vt « L 

where V remained constant, was an example of this  situation 
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In this case, t(t) 1s simply Vt. If the search plans Is such 

that 

a) C(M(j.t)) - «(t) 

b) Prob  (M(j.t))  - MAX  {Prob  (2):C(Z)  < *  (t)} 

Then M Is  a UNIFORMLY OPTIMAL  SEARCH PLAN,  denoted M#. 

Observe that the above definition formalizes what was 

intuitively shown In I.     For,  If at any time t, the  plan 

costs exactly the amount of effort by that time available, 

and reaches  the maximum value  of probability of detection 

which  Is attainable with  that effort, then, besides of being 

the best possible plan for the constraint which  is  Imposed, 

it Is   "constraint independent"  in the sense that no constraint 

alteration will  be able to alter the uniform optimum search 

plan. 

In the next section it will be discussed how to construct 

uniformly optimal  search  plans. 

H.     RETURN  FUNCTION AND  UNIFORMLY  OPTIMAL  SEARCH  PLANS 

According to what was  stated in I, the mathematical 

formulation of the resource  allocation  problem Is: 

MAX P(Z) 
s.t. 
C(Z)  < C 

Which,  in the context of  uniformly optimal  search  plans,  is 

equivalent to: 

MAX P  (M{j,0)) 

s.t. 

C  (M(J,*))  <  ♦   (t) 
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Therefore, the problem is to find a search plan which by 

spending at each instant "t" all  the effort which by that 

time is  available, maximizes the probability of detection. 

The discussion of the general  solution for this type of 

problem depends strongly on mathematical programing methods, 

and is far beyond the scope of this paper.    The interested 

reader can see [2], and [9], for applied and theoretical, 

respectively, details.    However,  it is possible to devise a 

solution for the mentioned problem, by using the concept of 

a return function, whose meaning can be intuitively explained, 

as  following: 

Suppose that an increment of effort, h, is applied in cell 

j.    The corresponding increment in probability of detection, 

considering that an amount z was already applied,  is: 

fi  tBj   tZ + h)   - Bj   (Z)] 

and the increment in cost is 

hA 
but 

therefore 

j 

Pj  [Bj   (Z + h)   - Bj   (Z)] : Pj  Bj  (Z)  h 

Pj B^   (Z)  h _ ^  Bj   (Z) 
Aj  h *J 

Is the ratio between the  increase in effectiveness and the 

increase in cost, that results from placing a small  increment 

of effort in cell  j.    This  ratio is called the  return function, 

and is denoted by X(z).    But it is also a M.O.E.  of what is 

being done,  for the mentioned increment of effort will  produce 

75 4 

*»   A ̂ k. 



better results where x(z) Is maximum. In fact, (see [2] for 

proof) It can be formally stated: If M Is the search plan 

such that the next Increment of effort Is applied In the cell 

where X(z) Is highest, then M=M is the uniformly optimal plan. 

The preceding discussion which has been done for the discrete 

case, applies, with suitable transformations, to the continuous, 

as it will be shown In the examples, 

EXAMPLE 11 (discrete case) 

RETURN FUNCTION FOR THE RANDOM SEARCH L.D.F. 

Let 

Bj (Z) « 1 - EXP [- WZ] , j = 1, 2 ... J 

then 

B' (Z) = EXP [-WZ] 

and 

P. EXP [-WZ) 

^ m • ^ 
Suppose that all the cells have the same area. Then, 

the next Increment of effort must be placed In the cell where 

Xj(z) is highest. But this Is exactly the procedure used in 

the heading I example, for Pj EXP[-wz] is the numerator of 

the posterior probability formula for cell j, and due to the 

equality of the denominators, nly the numerators were taken 

in to considerations. 

Therefore, for the considered L.D.F. both procedures 

are equivalent. Furthermore, this equivalence is a proof that 

the search plan used in the mentioned example, was uniformly 

optimal. 
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EXAMPLE   12 

AN  UNIFORMLY  OPTIMAL   PLAN   FOR A CONTINUOUS  SEARCH  AREA  CASE 

Suppose the situation described by the following assump- 

tions: 

a) The target's  location Is  described by a circular 

normal   distribution,  l.e: 

f  (r.8)  « ^-7 EXP  [- I-w 
[R^]        2iro 2o 

for 

r ^ 0 

0 < Q < Zv 

b) The  LDF for the  case, which  Independs  In  (x,,  x»),  Is: 

B  (Z)  = 1   - EXP[-WZ] 

and,  therefore,  assuming W=1 

B'(Z)  = EXP  [-Z] 

c) The  available search effort  Is  given by 

♦(t)  * WVt 

d) The  return function,  for the  continuous  case.  Is 

defined  as: 

X(x.Z)  = f  (x1,x2)  s'Cx.Z) 
[X^Xg] 

or.  In  polar coordinates: 

X(r,Z)  = f  (r,e)  •'((f^   ,Z) 
[R.8] 
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for a given z. 

To obtain an uniform optimal plan. It Is necessary to 

find X for each time t, namely X(t) and then solve this 

equation for 

Z - M# ((r.e).t) 

because M*(Ire),t)  ) Is the amount of effort that must be 

placed at point (r^e), by the time t. 

Under these assumptions. It is possible to derive an 

expression for X(t) (see [2] for details) and the expression Is 

X(t) 1 EXP [- (MVt) ] 
2ITO        no 

by letting 

iM)H't 
TTO 

the search plan Is: 

where 

M# ((r^^t) = [In (f (r1e)/X(t))] 

r2 + 

[X]+ 
X If X>0 

0 If X<0 
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which does not depend on e. This Is due to the fact that 

f(r1 ) Is radially symmetric and also because B(Z) does not 

Cry] 
depend on position. Then, supresslng 6, It Is possible to 

write the plan In a more convemient way: 

2a' 
For r < R(t) 

Mf(r.t) - 

0 For r > R(t) 

where 

R(t) « 2o2 K/t . t > 0 

Therefore, the optimal plan starts at the origin and 

spreads In such a way that by time t all the effort Is placed 

Inside a circle of radius R(t). This means that as the search 

progresses, the effort Is accumulated around the origin. 

This makes sense because the origin has the highest prior 

target location density. 

Such a plan can only be approximated in real life situations 

I.  EXPECTED TIME FOR FINDING THE TARGET 

In I, It was pointed out that the time taken to find a 

target, can be used as a M.D.E. for search plans. However, 

It should noticed that this time is a random variable T. 

A reasonable approach is to minimize the expected value 

of the random variable T. Let y be the expectation of T, and 

let P(t) be the probability of finding the target at, or before 

time t. 
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Notice that P(t) is the C.D.F. of T. By definition, the value 

of u is: 

y - / t P (t) dt 
.00 

but, due to the fact that T is a non negative random variable, 

it can be demonstrated (see [10]), that: 

U ■ / Cl - P(t)] dt 
o 

Now,  consider the  uniform optimal   search plan M  .    By the 
§ 

very definition of M  : 

P[Mf(x,t)]  > P[M(x,t)] 

where M is any other search plan.  Therefore: 

1 - P[M#(x,t)] < 1 - P[M(x.t)] 

and 

/ {1 - P [Mf(x,t)]} dt < / {l-P[M(x,t)]} dt 
o o 

or 

where y    and  u are  the mean  times  to  find  the  target,  for 
I 

M    and M,   respectively. 

Therefore,  the  uniformly optimal   search plan minimizes 

the  expectation of T,  and under these  circumstances  it is 

imaterial   what M.O.Z.   is  used in  the  problem. 
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EXAMPLE 13 

EXPECTED TIME FOR THE UNIFORM TARGET'S LOCATION DISTRIBUTION 

Suppose that the following conditions holds: 

(a) The target's location Is uniformly distributed 

Inside an area A. 

(b) The LDF Is: 

B(Z) - 1 - EXP [1WZ] 

therefore, the CDF for T Is: 

WVt 
FT(t) - P(T<t) • P(t) - 1 - EXP [-^ ] 

under these conditions, the expected time for finding the 

target Is: 

E[T] - y • /* [1 - P(t)[dt - /" EXP [-Mj[l]dt • ^ 
o o 

Applying this formula to chapter's I example, In the case 

Pj « 1/4 for all cells, and recalling that the total area 

has 6.000 square miles, the expected time Is: 

6.000 
■ 4 hours 

15x100 

Observe that If In the CDF, t Is replaced by n, the probability 

of detection after the expected time Is gone Is: 

UVA 
P(y) • 1 - EXP l-^jjl  - 1 - EXP [-1] - 0.633 
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The preceding computations were done under the assumption 

that the search only stops If the target Is located. However, 

It Is possible to compute the expected time to detect the 

target, under the assumption that the search continues either 

until the target Is located, or until some pre-asslgned value 

of probability of detection, say P*, Is reached. Let T* 

be the time when: 

P (t) ■ P* 

from condition b) 

P (T*) « p* - 1 - EXP i-^j^-  ] 

and therefore 

T* ' WT ^ tT^d 

Let 6 be a random variable which describes the duration of 

such a search. The C.D.F for e, can be derived considering 

that: 

wve- P O<0 if 0<T*) - 1 - EXP [-^Tp] 

and 

P (0<e if e>T*) « 1 
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Then 

F (e) 
i . EXP |> ^]  if   e<r 

i if   e>r 

and the expected value of e Is: 

■ T*     wve 
E [e] • / (i - F (e)) de - /  EXP [- -jp] de 

0 0 

WV0- P*A 
+ / (1-1) de • / EXP [- ^3 de • T7 

T* 0       A 

Suppose that In the 6.000 square miles area of Heading1 

I example, a search Is Intended to be performed, which Is 

to be stopped when a probability of detection P* Is reached. 

In order to gain some insight in the order of magnitudes 

Involved, T* and E[e] will be computed for several values 

of P*, as it Is shown in the table below: 
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p* T*  (Hours) E[e]  (Hours) 

0.500 2.772 2.000 

0.600 3.665 2.400 

0.700 4.811 2.800 

0.800 6.437 3.200 

0.900 9.210 3.600 

0.910 9.624 3.640 

0.920 10.100 3.680 

0.930 10.612 3.720 

0.940 11.230 3.760 

0.950 11.980 3.800 

0.960 12.872 3.840 

0.970 14.020 3.880 

0.980 15.648 3.920 

0.990 18.420 3.960 

0.992 19.312 3.968 

0.994 20.444 3.976 

0.996 22.084 3.984 

0.998 24.856 3.992 

1.000 T*— 4.000 

It must be noticed the enormous disagreement between 

the  time to stop and the expected time  for the search, as 

P* is Increased.     Suppose that in a mine sweeping problem, 

the mines  are  randomly  distributed In  the  area A and the 

sensor characteristics  are,  as before W «  15 mile and 

V ■  100 knots.     In such a context, P(t)  can be interpreted 
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as the fraction of the total number of mines, which was 

detected by time t. The tremendous decreasing return's 

effect can be seen In the above table (column 1 and 2). 

For example, to Increase the fraction of mines detected from 

50%  to 70X, the stopping time Is Increased In 2.039 hours, 

and to Increase that fraction from 99.4t to 99.8X, the 

time Increases In 4.412 hours. 

Suppose now the same area A, sweep width W, and velo- 

city V, as In example 13, I.e., 6000 square miles, 15 miles, 

100 knots, respectively. However, the probability distri- 

bution Is no longer uniform but given by 

0.4 If j • I 

0.3 If j • II 

0.2 1f j - III 

0.1 If j - IV 

As In the last part of Heading's I example. Recall that 

a uniformly optimal search plan was derived there, which can 

be written as: 

M#(j,t) 

Vt 
I
Z
I " *7 

ii " Z
III 

IF 0 < t < 01 

ZlV 
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r v(e1 + f) 
ki 

M#(j.t) -(Zu vt IF GT < t < 0] ♦ 63 

illll " ziv • 

e 2 . t 

—?r zi - 'i 

e, 

ii 

M#(j.t) -( 

v(r +1) 

vt 

IF e1 + 02 < t < 9, + G2 + 03 

III " ^7 

zIV - 0 

L 

/: 

7(0-, + ©2 + 03 + T 

ZI s 

0o    Ü- 

v(r * r+ T> 
II 

n'u.t) ■< 

1 

0^»    f 

IF 01 + 02 + O3 < t 

II 

2  -  Vt 
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Where 

0. « 0.28770 hours 

62 " 0.8100 hours 

e3 ■  2.07945  hours 

The  corresponding CDF  is 

P(t) 

P(t)  = 

P(t) 

H(t 
>• 

I 

WVt (i - EXP [- I"]   if   0 < t < e1 

MVCe, ♦ I ^ 
1 (1   -  EXP   [ 

1 

II   (1   -  EXPt-  ^ 

if    O^tO^Gg 

0 
2^) 

I   (1   ■   EXP   [ 1A1   ^ 3   ♦ 

II (1   -  EXP   [ 
WV(7ri   +   l   ) 
 -2 L. ]  +     if    01+02<+<01+02+0. 

in (i -EXP c- ^ 
e2 . 03 . t 

(1 - EXP [- 

wv(0i + r + r + T 

j, (1 - EXP [1 
WV(09/9 ♦ 0,,, ♦ t/^ '2/2 T "3/3 

—^ ]) ♦ 

0 

m ( 1 - EXP [- 
WV(ö3/3 + t/4) 

if 01+02+03<t 

]) ♦ 

IV n " EXP ^ " Ä7]) 
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or replacing the values for A., 0^, W, V, and P.: 

0.4 (1 - EXP [It] 0 < t < 0.28770 

0.4 (1 - EXP [-0.28770 +|] + 

0.3 (1 - EXP [- £)) 
0.28770 < t < 1.0977 

P(t) - ( 

v. 

0.4 

0.3 

0.2 

0.4 

0.3 

0.2 

0.1 

EXP [-0.6927+ |]) + 

EXP [-0.405 +^]) +  1.0977 < t 1 3.17715 

EXP[- |]) 

EXP [-1.3927 +J]) + 

EXP [-1.105 +J]) + 

EXP [-0.7 ♦ J]) + 

EXP [- \-\) 

3.77715 < t 

As was mentioned before, In general: 

U - /" [1 - P(t)] dt 
o 

In this case, however, due to the form of P(t), this expression 

becomes: 

0, Qi+Qo 
y - /  [1 - P(t)] dt + / ' ^ [1 - P(t)] dt + 

0 Gj 

/ " Z 3 [1 - P(t)] dt + / 
0^02 0i+02+e3 

[l-P(t)] dt 
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or 
0.2877 

l}  •  jl-0.8[l-EXP{-t)]dt » 0.27342 hours 

1.0977 
fl-0.4[l-EXP(-0.2877- |]-0.3[1-EXP(- |)] dt = 

0-2877 0.5941216 

3.17715 

ll-0.4[l-EXP(-0.6927- |)]-0.3[1-EXP(0.405- |) ] - 

1.0977 

0.2[1-EXP{- |)] dt = 0.5972783 hours 

ll-0.4[l-EXP(-1.3927- J)] -0.3[1-EXP(-1 .105 - J)] 

J3.17715 

- 0.2[l-EXP(-0.7 - |)3 - 0.1 [1-EXP(- J)] 

■ 0.5270036 hours 

Then 

y »  Ij   +  I2 +  I3 +  I4 =  1.9918235 hours 
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The computation above Is very cumbersome,  and.  In fact, 

for a  larger number of cells It may  be Impracticable.    In 

real  life situations however.  It Is  possible to program a 

computer to do the work.    Anyway, the knowledge of the 

expected time to find the target. Is very Important In search 

planning, and this example shows how to do It for a grid 

type distribution. 

If, as  It was done  In the  preceding example,  the search 

Is to be stopped  If the  target  Is not found by time T*, when 

P(T*)   « P*,   a pre-asslgned value, then, due to the form of 

P(t),  becomes much more  difficult from the computational   point 

of view, to determine the values of T* and E[e].    The general 

approach to  the problem Is:     (a) given P*, determine In 

what Interval T*  Is.    Invert the corresponding expression for 
T* 

P(t) and obtain T*; (b)  compute /      [l-P(t)] dt • E[e] 
o 

As example,  suppose first P* ■  0.06 considering that 

P(0.2877) -  0.098; then T* belongs  to the first  Interval, 

therefore: 

T* . -  in [1- Wt] 0.16252 

or In general: 

Ak p* 
T* - Vff [In (1- if^)]* 

because In  this  case, due to the numbers which are being used. 

^t" 
for any j. 
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Then 

E (6) - /  [l-P(t)] dt 

or In the example 

0.16252 
E (e) - / (1-0.4 [1 - EXP (-t)]) dt - 0.157 hours 

o 

However, If P* Is chosen to be equal to 0.25, things are not 

so easy. Considering that 

P (1.097) - 0.298 

then T* Is  located In the second Interval, and the equation 

to be solved Is: 

P  (x)  • 0.4  [1   -  EXP   (-0.28770 - J)] ♦ 0.3 [1   -  EXP(-|)] 

and 

T* -  0.2877 ♦ x 

which only can be solved by numerical  methods.    After the 

value of T* Is  known,  the expected time   is: 

E (e) 

0.28770 

/     {1-0.4 [1   -   EXP(-x)}dx  + 

/     (1-0.4  [l-EXP(-0.2877  -  })] 

0.2€    J 

-  0.3 [1-EXP   (-  jr)]}  dx 
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The above calculations, could be done on a computer. 

EXAMPLE 15 

EXPECTED TIME FOR FINDING A TARGET WHOSE POSITION HAS A CIRCULAR 

NORMAL DISTRIBUTION 

In example 12, It was derived an M* plan for this case. 

The probability of detection at or before time t under this 

plan Is: 

Pit) ■ 1 - (1 ♦ K «T) CXr [- k /f] 

whose derivation can be found In [2]. The expected time Is 

then: 

«a to 

f    [1  -  P(t)]dt « /    [1  + K /T] EXP  [-  k /f]dt 
o o 

OTTO; 

WV 

Again, fixing a probability P*. and stopping the search 

either If the target Is found or If a time T* such that 

P(T*) ■ P* Is reached, leads to another way of defining the 

expected time.  In this case: 

p* . p(T*) . 1 . (1 + k /T*) EXP [- k /T*] 

equation which can be solved for T* by numerical methods. As 

before, the expected time for a search under these conditions 

Is: 
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B (•) ■ / [1 - F (O)] de - 
o 

T* 
• / {(1 + K/t) EXP [-K/t]} dt - 

o 

T* + ^ - ZKEXPC-K/T7) {J^ + ^- + ^j} 

where e, F (9) and E(e)v have the same meaning as in example 13. 

J.   FALSE TARGETS 

Suppose a detection device, a radar for example, and 

consider the problem of setting it in sensitivity control. 

The more sensitive the Instrument is made the less likely it 

will miss a target. Then, for any given distance the instanta- 

neous probability of detecting the target, given it is there, 

is an increasing function of the radar's sensitivity. On the 

other hand, as the sensitivity is made higher, the probability 

of a false alarm is also increased.  For with higher sensitivity 

more noise is presented in the radar's scope, and since the 

operator is unable to differentiate between signal and noise, 

he will claim more frequently the presence of a target, where 

in fact what he detected was noise. 

This is one of the several situations that arises during 

a search when it is necessary to distinguish between the target 

and false alarms.  A member of the set composed of targets and 

false targets in called a "contact." Once there is a contact 

in the sensor's display, it takes some time to identify it as 

a target or as a false target, and even then the identification 

may be incorrect. 
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From the above considerations. It can be concluded that 

the presence of false targets should affect the search plan. 

In fact, under these circumstances, the search takes place In 

two phases: The first, called the broad search, is conducted 

using a sensor which is able to detect the contacts, but can 

not identify them. The second, the contact identification 

phase, is conducted by another type of sensor (in most cases, 

the human eye), which identifies the contacts. 

At this point, it is necessary to make the following 

assumptions in-order to build a model to handle the problem: 

(a) The search area is divided into J cells, each one with 

area AJ, and having a false target density 5j. The actual 

number Nj of false targets in Aj is Poisson distributed: 

(A16i)
nEXP(-A.6i) 

'(N. = n) =      m ' ! 

Let T. stand for mean  time to identify a contact in cell   j. 

(b) As soon as a  contact is  detected, the broad search stops, 

and the contact is investigated  until  positive identification. 

If it is identified as a false target, the broad search  starts 

again. 

Under the preceding assumptions,  it can be demonstrated, 

that it is not possible to find  a uniformly optimal  search plan. 

However, it is possible to devise a plan which minimizes the 

expected time to find  the target (observe that in this  case the 

two M.O.E.  do not coincide). 
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The  following results will   be stated without proof 

(complete discussion can  be found In [2]): 

(R.l)    The return function, for this case Is given by: 

Vz' 
p.i "i'1' 

AjCl  * »JTJ»,»)] 

(R.2)    The best search plan, M*, Is the one which allocates 

the next Increment of effort to the cell   (or cells) where x{Z) 

Is higher. 

(R.3)    The probability of  finding the target Is  still: 

Ml)  -    t}  Pj   Bi   (Zj) 

However, when computing  the probability at or before time T, 

It Is to be understood that this time refers to broad search 

time, not Including therefore  the time spent In contact 

Investigation. 

(R.4)    The cost of an allocation Is In this case. 

C(2)  ■    t^  Aj  li * Aj Ij Tj  I,  (Zj) 

Where Z. refers to the amount of broad search effort allocated 

to cell j.  For sake of clarification, suppose that Z. stands 

for the time per unit area spent at cell j, then: 

C(Z) ' ^  AJ ^ + AJ ** h  BJ W 
At this point, an example seems to be helpful. 
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EXAMPLE 16 

Suppose that a helicopter 1s searching for a trawler X. 

whose location distribution Is pictured In Figure  15 below: 

3o MI 

CtlL I CHL Tt 

SOMI SOMI 

Figure 11-15 

Suppose further that there are several other trawlers In both 

areas, and the helicopter must approach each one It contacts 

in order to verify If  she Is   the trawler  X.     If It  1s assumed 

that the trawlers  are uniformly distributed In each  area,  the 

model   presented applies, playing X  the role of target, and all 

other trawlers the role of false targets. 

Let the LDF-be: 

B(Z) *  B ,($})■ 
t,VW 

1   -  EXP   [- -j[—] 

where t. Is the amount of time spent In cell j. 

And the other parameters: 

Tj ■ 12 minutes ■ 0.2 hours 

V ■ 100 knots 

W - 15 miles 

96 

- 



^ 

And due to past experience In that fishing area, It Is estimated 

that there are about 3,000 trawlers In cell   I, and  75 In  cell 

II then: 

6j    »  2/sq.  ml. 

on ■ 0.05/  sq.  ml . 

In order to know where to start.  It Is necessary to compute 

the return function for Z «  0.    In this case: 

& 

WVt 
Pj WV  EXP  (- -jpi) 

J  X(T7'  =  ; mt> 
Aj[l  +  ÖjTj   WV EXP   (- -£-* 

J 

and 

XjCO) 0.55  X   1500  .   0.55  _   «  «  , n-^ 
15Ö0 [I  + (Ö.2)  (2)  (15ÖÖ)J      STTT -  ^ Ä 1 !J " 

hours -1 

i     in\  . 0.45   X  1500  ss 0.45    .  ,   y   ln- XII(0)     15ÖÖ LI + (Ö.2) (Ö.Ö5)  (1500)     ITT " 3 X  '^ 
hours 

Therefore, the plan starts  In cell II, the one with smaller 

prior probability.    This  happens  because of the big difference 

In false targets' density, over weighted the difference  In 

probability.    The effort will be placed only In cell II, until 

a time, 0 such that: 

l,|(«) 1,(1) 

or 
0.45  EX?   [-Q] 
1 + 15 kxß L-0] » 9  X   10"^ 
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Which solved for 0, gives 

9 ■ 3.9 hours 

after this time, the effort must be split evenly among the 

cells. 

K.   SEARCH PLANNING 

The following are basic topics In search planning: 

(a) Determination of the Initial target location 

probability distribution. 

(b) Evaluation of the search system capabilities 

(c) The decision to begin search 

(d) The decision to terminate search 

Before examining each one of the mentioned topics. It 

should be noticed that the above 11st Is by no means exhaustive. 

In fact. It Is very likely that for each situation a multitude 

of other factors must be considered.  However, as was mentioned 

In the very first sentence of this section, these are basic 

topics In the sense that they are worthy of consideration under 

any circumstances, and also that, the decisions concerning them 

have a strong Influence In the discussions about any other 

factors. 

In the determination of a prior distribution for the targets 

position. It Is essential to keep In mind that although sub- 

jective judgement play a central role In this matter, this does 

not mean that It Is just a guessing process. On the contrary. 

98 

^A. 



"^S" 
^f 

by observing some rules In analyzing all   the relevant Informa- 

tion about the target.  It Is possible to obtain a distribution 

which from the viewpoint of the search model,  Is accurate 

enough. 

In general,  it Is possible to think of two basic situa- 

tions at the starting point of a search operation.    Either no 

relevant Information about the target's last position is 

available, or a datum is somehow known.     In the first case, 

the uniform distribution is  the appropriate one.    The problem 

is  then to determine the position and the dimensions of the 

search area.  Usually,  in this case a rectangle is constructed 

and adopted as S.A., for the sake of simplicity.    The location 

and dimensions of this  rectangle will  rely strongly on the 

analysis of the available information, and mainly on expert's 

opinions.    Before seeing an example,  it  is necessary to  recall 

that the mentioned rectangle must contain the target with 

probability 1, and therefore,  the less information available, 

the  larger the S.A. will  be,  and consequently more effort must 

be  placed there,  in order to  assure  a determinated  level   of 

probability of detection. 

EXAMPLE 1 

Consider Figure   I, where  "A"  and "B" are  airports,  and 

suppose that an airplane  left  "A"  and did not arrive at  "R". 

Its  last position is  unknown   (from a very rigorous  point  of 

view,   "A"  is the aircraft last position, however,  for practical 

purposes,  this  kind of reasoning is  useless). 
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Figure 11-16 

Flight experts are asked to Inform what Is the maximum 

error of navigation for the aircraft 1n question. Meteorology 

people give the direction and Intensity of winds In the area 

during the time of flight.  From these considerations It Is 

concluded that AB1 and AB" are the extreme paths for the 

airplane. Further, the dashed regions centered at "A" and 

"B" are the approach control zones of the airport, and the 

plane has been seen leaving the "A" zone, and did not enter 

the "B" zone. 
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Flight control  people assure that It  Is Impossible to 

cross enter zone without being detected.     Finally, considering 

that between   "A"  and "B", there Is  no place for an emergency 

landing, the  conclusion 1s that the  plane crashed somewhere, 

and again,  by consulting flight experts.   It Is determined the 

maximum distance of landing from each point of the extreme 

courses, under the prevailing conditions  of wind.    The  search 

area of Figure 16  Is then a  result of all   the above processes. 

It should be noticed that at this  point,  all  the work  of the 

search planner Is  to obtain  from the experts the necessary 

amount of Information  In order to draw the minimum search area 

which contains the target with probability one. 

When a  last position Is  known,   the next question  concerns 

how It was  determined.     The  reasons   Is that there Is  always 

an error In  navigation and the probability distribution for 

the target's   location will  reflect this error.     In fact, when 

a last position Is known, the target's position distribution 

can be  viewed as  the error In navigation  distribution.    There- 

fore,  it Is  by the knowledge of how the mentioned last  position 

was obtained  that  it is  possible to obtain the form and the 

parameters  of a corresponding  probability  distribution.     In 

fact,  for a  large  class of situations, a  huge mass of data 

from past experience allows a search planner to obtain  very 

accurate results  In fitting a distribution to a specified 

situation.     Reference  [3] contains  tables  and curves  that can 

be used In many cases,  and which are results taken from past 

experience.     Perhaps  these distribution  fitting procedures  can 

be made more  clear with  the next examples. 
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Suppose a small  ooat asks  for help, and gives her actual 

position.    Evidently there Is an error In this position,  and 

this error Is assumed normal.    Reference [3] tabulates.  In Its 

chapter 6, a  "total  error In position," denoted  "c", which 

stands  for the radius of the circle which, with probability 

0.5, contains  the  target.    Assuming that the position was based 

In dead reckoning,  four hours after last fix and that the 

average speed for that type of boat Is  10 knots,  the value 

for the  "total  error In position" Is: 

'   C « 46 miles 

From the properties  of the bivariate  normal   distribution, 

already discussed In II. 

1 
C rrre 

or. In  this  case: 

1 *2 
46 

TTTT ■ 38.9 miles 

Therefore, under the assumption of normality, If the 

search  area Is centered  In the  last position, the target's 

location distribution Is  a circular normal , with mean zero and 

standard deviation  38.9  miles.     A search grid can be  constructed 

If necessary, by the use of the  results presented In II 

It  Is  Interesting  to mention, that the drift effect can 

be computed In cases like this,  by making 

c' /il~r? 
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Where X Is the former value for c (46 miles In this example), 

and d Is a "drift error" which can be found, for many types 

of targets and meteorological and oceanographlc conditions, 

In chapter 6 of reference [3]. 

Observe, however, that a drifting target Is In fact a 

moving target, and that the described procedure Is a practical 

approximation that allows the search planner to deal with a 

moving target In the same way as with a stationary one, just 

by Increasing the variance of Its location distribution. This 

approximation is only valid within the limits of the small 

velocity that characterizes drifting. 

Finally, the assumption of normality comes from the 

generalized notion that errors In navigation are In fact sums 

of many errors (Instrument reading errors, plotting errors, 

etc.), and thus, due to the central limit theorem (see reference 

[4], It Is reasonable to talk of normality. 

EXAMPLE 3 

THE SEARCH FOR THE SSN THREASHER 

This Is a real life example, which is discussed In full 

detail In reference [7]. Also, the Interested reader can find 

Important material about under water search In reference [8]. 

The Thresher was lost In approximately 8,400 feet of water 

during her sea trials, after an overhaul, near the gulf of 

Maine.  In establishing her location distribution, the analysts 

In charge, considered the following points: 
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(1)    Last Known Position 

At 0917 on April  10,  1967.  the USS Skylark received 

a UQC (underwater telephone) message  from Thresher reporting 

that she was  In trouble  for maintaining her trim.    A few seconds 

after. Skylark heard breakup noises over the UQC.    At this 

same time, Skylark determined her own  position by using  a loran 

alfa.    Then,  at this point, the  following are the relevant 

facts. 

  The Skylark position, determined by  the loran alfa, 

which has a  "total   error In position"   (see  last example), of 

1.5 miles. 

  The nominal   range  of UQC,  which  Is  5,000 yards. 

Therefore, by the same  reasons  discussed In example 2,   the 

Skylarks'  position can be described by a circular normal  dis- 

tribution centered  at the loran1  fix,  and with standard 

deviation given by: 

aX1 " aX2 ' TThf 

On  the  other hand,  by the  knowledge of the  UQC range.  It 

was assumed that the Thresher's  position had a  uniform distri- 

bution  Inside of a circle whose  radius Is  5.000 yards,   and 

centered In each possible Skylark's  position.    This,  leads to 

a compound distribution, as discussed in II-F for, In order to 

compute  the  probability  in any  cell   In the search space. It Is 

necessary to deal  with  a uniform density conditioned by a 

normal   one. 
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(2) Horizontal and Vertical Motion Before and After 

the Last Known Position 

Although the various courses steered by the Thresher 

before the accident was known, no factual Information con- 

cerning speeds before, and courses and speeds after the 

accident were available. Also nothing was known for sure 

about vertical motion. However, by using experts' opinions, 

a maximum range from the last position, that the submarine 

could be carried to was estimated.  Notice that this maximum 

range also condition the probability distribution. 

(3) Oil Slick 

A dlesel oil slick was noticed nearby the Skylark's 

position. However, norellable information could be extracted 

from the experts, because of the great uncertainty about 

winds, currents, etc., in the area. 

By using the information contained In (1) and (2), and 

disregarding (3), the search grid was constructed as follows: 

I. A search area of 10 X 10 miles was established. This 

was done by computing the size of the 0.9 probability square, 

for the compound distribution (see II-F example, for the case 

of a circular normal}, and adding the range predicted in (2), 

by the experts. 

II. The search grid was laid out by dividing the search 

area In squares, each one mile on a side, and computing the 

respective probabilities. Finally, the following observations 

concerning to the construction of search grids are of Interest: 
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(1) Whenever possible the coordinate system for 

the grid should be the north/south system of the mercator 

chart for the are In question, and the units of measure the 

same. I.e., for the x1 axis longitude, for the x2 axis latitude. 

(2) The choice of the dimension for each cell Is 

dictated by the ratio between the standard deviation of the 

navigation error (an) and the sweep width (w). This Is die to 

the fact that If oN/W Is large, then It is very likely that 

appreciable amounts of effort Intended for one cell will be 

placed outside of that cell. Reference [7] has a nomograph 

that can be used for determining the correct dimensions. 

Recall that values of an, for several cases, can be obtained 

by dividing the "C" factors tabulated in references [3] and 

[7] by 1.18.  In reference [3], "C" is called "total error in 

position," and in reference [7], "circular probable error." 

(3) Although the calculations of each cell's 

probability presented in II-F might seem, at first sight, very 

straightforward, in fact they are usually not.  For example, 

in the search for the Scorpion (see reference [8], nine 

scenarios were considered. Besides the obvious volume of 

calculations, it is not common that the distribution of a 

random variable, conditioned by many others, can be written 

in a closed analytical form. In this case, the correct approach 

is the use of a Monte Carlo method. A computer simulation for 

generating a search grid is described in reference [7]. A 
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complete list of the program, which Is written In FORTRAN IV, 

and that can be used In a wide range of situations, can be 

found In Appendix D, of that reference. 

Item 6 

After the target's location probability distribution Is 

known, the next step for the search planner Is to evaluate what 

can be done with the resources he has. This Is a very Important 

step, because It may be that he does not have means enough to 

accomplish his mission.  Suppose, for Instance, that under the 

situation described In I-A example, we want a search with 

probability 0.95 of finding the target. As can be recalled, 

this Is Impossible with the resources available, which did not 

allow more than 0.45. 

Although the very first consideration in evaluating a 

sensor system, should be with the LDF to be employed, the 

random search formula, being a conservative estimate of search 

efficiency, should be employed. 

Determination of the sweep width then becomes the first 

step. The best way to obtain a value for a sensor's sweep 

width Is to Integrate its lateral range function, as described 

in II-E. However, in many cases, the lateral range curve Is 

not available and the following are special guidelines to 

deal with such situations; 

(1) For visual search, use the numbers of the table in 

Figure 7-2 reference [3]. 

(2) For electronic devices, the following procedures, 

listefi In ordtr of preference, are recommended: 

i 
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I. When the minimum detection range Is known: 

W " (1.5) (minimum detection range) 

II. '.«'hen average detection range Is known: 

W ■ (1.2) (average detection range) 

III. When maximum detection range Is known: 

W ■ (0.8) (maximum detection range) 

IV. When no detection range Is known: 

W » (0.4) (horizon range) 

Notice, however, that the above rules of thumb should be used 

carefully, and their results always checked by common sense. For 

Instance, suppose that a search planner wants to estimate the 

sweep width for an airplane radar, operating at 3,000 feet of 

altitude In searching for a small boat. By rule IV, the sweep 

width Is 25.6 miles, which, for a small boat Is exaggerated. 

The visual sweep width for the best meteorological con- 

ditions for an airplane at 3,000 feet, searching for a boat of 

less than 30 feet long Is 7.3 miles (see Table 7-2 In reference 

[3]), and this Is a good estimate of the radar sweep width In 

this case. However, If Instead of a small boat, the plane were 

searching for a 10,000 ton ship, then the 25.6 miles of rule IV 

would be a good guess. 
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Anyway, reference [3] should be consulted whenever such 

rules are to be used. 

(3) For the special case of underwater search, reference 

[7] states very Interesting procedures for estimating sweep 

widths of sensors such as underwater cameras, magnetometers, 

sonars and so on.  It should be mentioned that when performing 

an underwater search, the sweep width Is often treated is a 

random variable. For Instance, consider the simple case where 

for a given sensor the sweep width Is w1 If the target Is just 

seated In the bottom, or w* If the target Is burled In the mud. 

If p stands for the probability of being seated In the bottom, 

1-p Is the probability of being burled In the mud. The pro- 

bability of detection Is: 

P(Z) - pd-EXPClw^]) + (1-p) (l-EXP(-w2Z)) 

observe that If the mean value 

w » pw1 + (1-p) w2 

If used to compute P(Z), the expression 

P(Z) = l-EXP(-wZ) 

Leads to a different result than (*), which, as can be proved. 

Is the correct one.  Usually, In underwater search, random 

sweep widths are approximated by gamma distributions. A 

complete discussion can be found In reference [2J. 
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A point of Interest Is the evaluation of the overall 

sweep width when more than one sensor Is looking for the same 

target. In order to derive such a result, ler w be the sweep 
th J 

width of the J  sensor, and M Its maximum range. Clearly, 

the ratio ßj ' ^ 

can be thought as a measure of the probability of detection 

Inside that maximum range. If n sensors are used in a group, 

then the combined sweep width is given by: 

W « W, + w2 (1-^) + --- wN(i-ß1) (l-ß2) --- O-BN.-I) 

where W >w>--->W 
T " I "     "" N 

A proof for this statement can be found In reference [7]. 

Another relevant point In determining sweep width has to do 

with the targets1 physical dimensions. This Is an entry for 

many tables (table 7-2, reference [3], for example, divides 

the targets In seven categories, ranging from life rafts to 

ships over 10,000 tons of displacement). In the Thresher's 

eise, the sweep width was det ermined assuming a 268 by 300 

root target which were the submarine's dimensions. However, 

after the search, it was concluded that due to the Impact on 

the bottom and the consequent breakup, the light debris 

(twisted metal, etc.) scattered by the submarine, together 

with main parts of her hull, were in fact a target of 1,000 

X 5,000 yards. Therefore, the sweep width auopted was smaller 

than the real one. Reference [7], in its section 4.8, discusses 

In detail this point and tabulates some of the results. Finally, 

an approximated expected time for the search must be computed. 
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The word "approximate" was used because, at this point, the 

search planner does not know yet what search plan he will 

employ.  In fact, the choice of a search plan will depend on 

this first rough estimate of search time. Anyway, by using 

the methods and formulas presented In II-I, It Is possible to 

obtain a reasonable approximation to the expected search time. 

Notice that the possibility of false targets must be carefully 

considered at this point; If there Is a considerable density 

of false targets In the area, the broad search time can be a 

very misleading measure of time to be spent. 

ITEM C 

Suppose that a search operation costs an amount 6 per 

unit of time, and that the value of the target is A.  If T* 

Is the expected time to find the target, then e*, the expected 

cost is: 

e* - eT* 

Therefore, in order to make a "profit", the search must begin 

only if: 

A > eT* 

Observe that T* can be computed as was done In II-I, 

either under the assumption that the search continues until 

the target is found, or until a certain level of probability 

is reached. In the latter case, 6* will stand for the cost 

to reach that amount of probability. At this point, an example 

seems helpful. 

Ill 

-" ■ -\ mma 



EXAMPLE 4 

Suppose that after an exercise, a torpedo sank.  If Its 

value Is 10,000 dollars, the cost for searching Its 4,000 

dollars/hour, and the available sensor has a speed of 4 knots 

and a sweep width of 0.5 miles, should a search planner order 

the search to begin If: 

(a) the torpedo's location Is uniformly distributed 

Inside a 2 X 2 mile search area. 

(b) the torpedo's location has a circular normal distribu- 

tion with o ■ 1 mile? For case (a), the expected time Is: 

A   4 
T* « — ■ — "2 hours 

WV  2 

therefore 

and 

6* - 4.000 X 2 - 8.000 dollars 

v - lo.ooo > e* ■ 8.000 

Then the correct decision Is to start the search. 

the expected time Is: 

2vo 
T ■   ■ 3.14 hours 

UV 

For case (b) 

Therefore 

and 

6* ■ 4.000 X 3.14 ■ 12560 dollars 

V • 10.000 < 8* ■ 12560 

So the best decision Is to abandon the torpedo. 
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In real life situations, the big problem Is to assign 

values for e and A. However, the above guidelines are useful 

whenever such a decision must be made. 

ITEM D 

The reasons for terminating search can be viewed In the 

same context as the reasons for beginning search. 

In fact. If the first Increment of effort Is spent because 

the expected return exceeds the expected cost, then the logical 

time for concluding the search Is when the expected return of 

additional Increment of effort Is smaller than It expected 

cost. Again, as was pointed out In 1tem(C), the big problem 

In real life Is to estimate value and costs. However, In the 

stopping case. It Is possible to argue, aft er the probability 

of detection has r eached a huge value and the target still 

has not been found, that there Is statistical evidence to 

Indicate that some assumption Is Incorrect and therefore to 

Justify termination of the search, or at least to reevaluate 

the Initial assumptions before search continues. Using the 

same notation as In Item (c), and for the case of the circular 

normal prior, search must stop by Ime given by: 

1)2T* /3A 
•FT» 

For the case of the uniform prior, where the returns are con- 

stant, the rule Is to stop when the probability of detection 

reaches some fixed value, say 0.95. 
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